

Unceste PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO **MESTRADO EM CIÊNCIA ANIMAL**

ADIÇÃO DE PROTEÍNA PLASMÁTICA A ASSOCIADA À PRENHEZ (PAPP-A) DURANTE A MATURAÇÃO IN VITRO AUMENTA O IGF-1 BIODISPONÍVEL É MODULA O PERFIL TRANSCRICIONAL DE COMPLEXOS CUMULUS-**OÓCITOS E EMBRIÕES BOVINOS**

ALAN BRUNHOLI GIROTO

Presidente Prudente - SP 2018

Undeste PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO **MESTRADO EM CIÊNCIA ANIMAL**

ADIÇÃO DE PROTEÍNA PLASMÁTICA A ASSOCIADA À PRENHEZ (PAPP-A) DURANTE A MATURAÇÃO IN VITRO AUMENTA O IGF-1 BIODISPONÍVEL E MODULA O PERFIL TRANSCRICIONAL DE COMPLEXOS CUMULUS-**OÓCITOS E EMBRIÕES BOVINOS**

ALAN BRUNHOLI GIROTO

Dissertação apresentada a Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade do Oeste Paulista, como parte dos requisitos para obtenção do título de Mestre em Ciência Animal - Área de Concentração: Fisiopatologia Animal.

Orientador: Prof. Dr. Anthony César de Souza Castilho

Presidente Prudente - SP 2018

636.208 982 G377a	Giroto, Alan Brunholi Adição de proteína plasmática <i>a</i> associada à prenhez (PAPP-A) durante a maturação <i>in vitro</i> aumenta o IGF-1 biodisponível e modula o perfil transcricional de complexos cumulus-oócitos e embriões bovinos \ Alan Brunholi Giroto. Presidente Prudente, 2018. 62 f.: il.
	Dissertação (Mestrado em Ciência Animal) Universidade do Oeste Paulista - Unoeste, Presidente Prudente, SP, 2018. Bibliografia. Orientador: Anthony César de Souza Castilho
	1. Proteína de ligação do fator de crescimento semelhante à insulina. 2. Complexos cumulus-oócito. 3. Produção <i>in vitro</i> de embriões. 4. Criopreservação. 5. Bovinos. I. Título.

L

ALAN BRUNHOLI GIROTO

ADIÇÃO DE PROTEÍNA PLASMÁTICA A ASSOCIADA À PRENHEZ (PAPP-A) DURANTE A MATURAÇÃO *IN VITRO* AUMENTA O IGF-1 BIODISPONÍVEL E MODULA O PERFIL TRANSCRICIONAL DE COMPLEXOS CUMULUS-OÓCITOS E EMBRIÕES BOVINOS

Dissertação apresentada a Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade do Oeste Paulista, como parte dos requisitos para obtenção do título de Mestre em Ciência Animal - Área de Concentração: Fisiopatologia Animal.

Presidente Prudente, 25 de maio de 2018.

BANCA EXAMINADORA

Prof. Dr. Anthony César de Souza Castilho Universidade do Oeste Paulista – Unoeste Presidente Prudente-SP

Dra. Raquel Zaneti Puelker Progest – Biotecnologia em Reprodução Animal Anhembi-SP

Profa. Dra. Isabele Picada Emanuelli UniCesumar Maringá-PR

DEDICATÓRIA

Primeiramente, dedico este trabalho à Deus, pois esta conquista foi apenas uma das vontades Dele.

Aos meus avôs Horácio Giroto e Antônio Brunholi.

Aos meus pais Terezinha e José, e ao meu irmão Alisson

Aos meus padrinhos Vera e Luis, exemplos de pessoas que sempre me apoiaram.

Dedico, também, a todos os meus amigos, aqueles que sempre estiveram ao meu lado.

AGRADECIMENTOS

Ao meu orientador, Prof. Dr. Anthony César de Souza Castilho, sem dúvidas um excelente mentor.

A todos os colegas de equipe: Patrícia Fontes, Priscila Helena, Fernanda Franchi, Marina Chaves e João Amoris. Pessoas maravilhosas que contribuíram de forma significativa.

Aos amigos Vitória Guilherme, Aline Sawa, Thaisy Dellaqua, Alexandre Mendes, Franciny Neves, Hugo de Rossi e Sara Nunes. Ajudaram ao máximo na realização deste trabalho.

Ao programa de Pós-Graduação em Ciência Animal e a Pró-Reitoria de Pesquisa e Pós Graduação da Universidade do Oeste Paulista - Unoeste. Aos doutores Eduardo M. Razza, Caliê Castilho, Guilherme P. Nogueira, Marcos A. Maioli, Marcelo F. G. Nogueira, Gisele Z. Mingoti, Raquel Z. Puelker e Isabele P. Emanuelli.

À bolsa de estudo sob o processo nº 2016/22812-5, concedida pelo convênio Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) e Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). É muito melhor lançar-se em busca de conquistas grandiosas, mesmo expondo-se ao fracasso, do que alinhar-se com os pobres de espírito, que nem gozam muito nem sofrem muito, porque vivem numa penumbra cinzenta, onde não conhecem nem vitória, nem derrota." (Theodore Roosevelt)

RESUMO

Adição de proteína plasmática A associada à prenhez (PAPP-A) durante a maturação *in vitro* aumenta o IGF-1 biodisponível e modula o perfil transcricional de complexos cumulus-oócitos e embriões bovinos

A protéina sérica associada à prenhez (PAPP-A) é capaz de modular a biodisponibilidade do IGF-1 (fator de crescimento semelhante à insulina tipo 1) pela quebra das ligação com as proteínas de ligação do IGF (IGFBPs). O objetivo foi avaliar como a adição da PAPP-A durante a maturação in vitro (MIV) afetou a biodisponibilidade de IGF-1, a abundância de transcritos nos oócitos e células do cumulus e blastocistos, a produção embrionária e a sobrevivência pós aquecimento. Foi realizada a MIV de 24 h em complexos cumulus oócitos (CCOs – 20/grupo) oriundos de abatedouro, em meio TCM199 livre de soro, com adição de PAPP-A (100 ng/mL; grupo PAPP-A) ou sem (controle). O IGF-1 foi guantificado no meio de maturação e os CCOs maturados foram utilizados na fertilização e cultivo in vitro. Oócitos e células do cúmulus foram separados; e blastocistos foram congelados para a realização da expressão gênica. Taxa de clivagem e produção de blastocistos foram calculados como porcentagem e transformados para arco seno. Dados de expressão gênica foram normalizados com a média do grupo de controle. Os resultados foram analisados por test t, porém a criopreservação embrionária foi testada por Qui-quadrado (JMP software, SAS). Diferenças foram consideradas significativas guando $p \le 0.05$. O grupo PAPP-A apresentou 27% mais concentração de IGF-1 biodisponível. Na produção in vitro de embriões, não encontrou-se diferença na taxa de clivagem, produção e sobrevivência embrionária. Apenas o gene TXNRD1 mostrou maior expressão nos oócitos do grupo PAPP-A. No entanto, nas células do cumulus PAPP-A, o VNN1 e HDAC2 apresentaram maior expressão, enquanto os genes AGPAT1, AGPAT9, FASN, CASP3, EGFR, HAS2, IMPDH1 e MTIF3 apresentaram menor expressão. Nos blastocistos PAPP-A, os genes CPT2, CASP9, DNMT3A, TFAM e KRT8 apresentaram maior expressão, enquanto os genes ATF4, CASP3 e IFITM3 apresentaram menor expressão. Em conclusão, a adição de PAPP-A durante a MIV aumentou o IGF-1 biodisponível, mas não influenciou a produção e a sobrevivência embrionária após desvitrificação. No entanto, o aumento do IGF-1 biodisponível pode melhorar a competência embrionária através da modulação da expressão gênica em oócitos, células do cúmulus e blastocistos.

Palavras-chave: proteína de ligação do fator de crescimento semelhante à insulina, complexos cumulus-oócito, produção *in vitro* de embriões, criopreservação, bovinos.

LISTA DE FIGURAS

- FIGURA 1 (A) Heat map showing gene expression differences between 19 control and PAPP-A data in oocytes. Rows and columns are clustered by Euclidean distance and Ward-linkage hierarchical clustering. Color intensity represents the degree of between-group differences (based on Spearman's correlations). (B) Relative abundance of differentially expressed genes in oocytes (p ≤ 0.05). Target genes were normalized with reference genes (*GAPDH*, *PPIA*, and *ACTB*), using the 2(^{-ΔCt}) method. Data are means ± S.E.M. of three biological replicates tested by t test.
- FIGURA 2 -(A) Heat map showing gene expression differences between 20 control and PAPP-A data in cumulus cells. Rows and columns are clustered by Euclidean distance and Ward-linkage hierarchical clustering. Color intensity represents the degree of differences between-group (based on Spearman's correlations). (B) Relative abundance of differentially expressed genes in cumulus cells ($p \le 0.05$). Target genes were normalized with reference genes (GAPDH, PPIA, and ACTB), using the 2(^{- Δ Ct}) method. Data are means ± S.E.M. of three biological replicates tested by t test.
- FIGURA 3 -(A) Heat map showing gene expression differences between 21 control and PAPP-A data in blastocysts. Rows and columns are clustered by Euclidean distance and Ward-linkage hierarchical clustering. Color intensity represents the degree of between-group differences (based Spearman's on correlations). (B) Relative abundance of differentially expressed genes in blastocysts ($p \le 0.05$). Target genes were normalized with reference genes (GAPDH, PPIA, ACTB and SDHA), using the $2(^{-\Delta Ct})$ method. Data are means ± S.E.M. of three biological replicates tested by t test.

- FIGURA 4 -Effects of PAPP-A addition during in vitro bovine embryo 22 production. In summary, we propose that the greater amount of IGF-1 into maturation medium by the PAPP-A action was able to promote a down-regulation in cumulus cells and an upregulation in blastocysts of transcripts related to the quality of COCs and blastocysts, particularly, cellular pathways involved in lipid metabolism, apoptosis, and embryonic development. The yellow ray indicates the PAPP-A action on IVM of bovine COC. The orange, blue and green arrows indicates mRNA abundance levels in PAPP-A group (cumulus cells, oocytes and blastocysts; respectively). The red arrow indicates the IGF-1 into the IVM medium. PAPP-A: pregnancy-associated plasma protein-A, IGF-1: insulin-like growth factor 1, COC: cumulus-oocyte complex, IVM: in vitro maturation, IVF: in vitro fertilization and IVC: in vitro culture. The genes are represented in the bold boxes.
- FIGURA 5 Experimental design to investigate the effects of the PAPP-A 27 addition to the IVM medium of bovine COCs (20 per group). We investigated the effects of the PAPP-A on IGF-1 into IVM medium, gene expression in COCs, *in vitro* embryo production, gene expression in blastocysts and embryonic cryosurvival. PAPP-A: pregnancy-associated plasma protein-A, COC: cumulus-oocyte complex and IGF-1: insulin-like growth factor 1.

LISTA DE TABELAS

TABELA 1 - IGF-1 quantification, blastocyst yield, and embryonic 18 survival. In the IVM, IGF-1 data are represented as fold change. To IVP, cleavage and blastocyst rates are represented as mean (%) ± S.E.M and n = replicate; and blastocyst re-expansion is shown as percentages evaluated by chi-square test.

MATERIAL SUPLEMENTAR

- TABELA S1 Relative abundance of target genes with similar 40 expression (p > 0.05) in oocytes. Data represent the group mean \pm S.E.M from three biological replicates. Gene expressions were generated using the averaged control group data for normalization. Housekeeping genes *GAPDH*, peptidyl isomerase A (*PPIA*), and β -actin (*ACTB*) were used for data normalization.
- TABELA S2 Relative abundance of target genes with similar 42 expression (p > 0.05) in cumulus cells. Data represent the group mean \pm S.E.M from three biological replicates. Gene expressions were generated using the averaged control group data for normalization. Housekeeping genes *GAPDH*, peptidyl isomerase A (*PPIA*), and β -actin (*ACTB*) were used for data normalization.
- TABELA S3 Relative abundance of target genes with similar 44 expression (p > 0.05) in blastocysts. Data represent the group mean \pm S.E.M from three biological replicates. Gene expressions were generated using the averaged control group data for normalization. Housekeeping genes *GAPDH*, peptidyl isomerase A (*PPIA*), β-actin (*ACTB*), and Succinate Dehydrogenase Complex Flavoprotein Subunit A (*SDHA*), were used for data normalization.
- TABELA S4 Housekeeping and target genes analyzed in oocytes 46 samples by RT-qPCR.
- TABELA S5 Housekeeping and target genes analyzed in cumulus 48 cells samples by RT-qPCR.
- TABELA S6 Housekeeping and target genes analyzed in blastocysts 50 samples by RT-qPCR.

SUMÁRIO

ARTIGO	14
ANEXO	

O presente manuscrito está redigido e submetido segundo as normas da revista Molecular, Reproduction and Development, execeto as imagens e tabelas dispostas ao longo do texto.

1	Addition of pregnancy-associated plasma protein-A (PAPP-A) during in vitro
2	maturation increases bioavailable IGF-1 and modulates transcriptional profile of bovine
3	cumulus-oocyte complexes and blastocysts
4	
5	Alan Brunholi Giroto ¹ , Patrícia Kubo Fontes ² , Fernanda Fagali Franchi ² , Priscila Helena dos
6	Santos ² , Eduardo Montanari Razza ² , Marcelo Fábio Gouveia Nogueira ³ , Marcos Antonio
7	Maioli ⁴ , Guilherme de Paula Nogueira ⁴ , Giovana Barros Nunes ⁴ , Gisele Zoccal Mingoti ⁴ ,
8	Edson Assunção Mareco ¹ , Anthony César de Souza Castilho ¹
9	
10	¹ Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil.
11	² Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil.
12	³ Universidade Estadual Paulista "Júlio de Mesquita Filho", Assis, São Paulo, Brazil.
13	⁴ Universidade Estadual Paulista "Júlio de Mesquita Filho", Araçatuba, São Paulo, Brazil.
14	
15	Grants:
16	São Paulo Research Foundation (FAPESP; grant numbers: 2012/50533-2; 2013/11480-3;
17	2015/04505-5 and 2016/22812-5).
18	National Council for Scientific and Technological Development (CNPq; grant number:
19	403063/2016-7).
20	
21	ABSTRACT
22	In this study we aimed to evaluate how PAPP-A addition during in vitro maturation affected
23	the IGF-1 quantification, transcript abundance related to cumulus oocyte complexes (COCs)
24	and blastocysts quality, embryonic yield, as well as post-warming survival. We matured
25	COCs through a 24 h treatment of TCM199 serum-free medium, either with PAPP-A

26 supplementation (100 ng/mL; PAPP-A group) or without (control). Maturation medium was 27 collected for IGF-1 quantification, and matured COCs were used for in vitro fertilization and 28 culturing. The PAPP-A group exhibited 1.27 times higher IGF-1 concentrations than control. 29 A comparison of *in vitro* embryo production across the groups found no difference in 30 cleavage rate, embryonic yield, and survival, 3 and 24 h post-cryopreservation. In PAPP-A 31 oocytes, only TXNRD1 was up-regulated. However, in PAPP-A cumulus cells, VNN1 and HDAC2 were up-regulated, while AGPAT1, AGPAT9, FASN, CASP3, EGFR, HAS2, 32 33 IMPDH1, and MTIF3 were down-regulated. Finally, in PAPP-A blastocysts, CPT2, CASP9, 34 DNMT3A, TFAM, and KRT8 were up-regulated, while ATF4, CASP3, and IFITM3 were 35 down-regulated. We concluded that PAPP-A addition increased IGF-1 but did not influence 36 embryonic yield and survival. Nevertheless, elevated IGF-1 could improve embryo 37 competence through modulating expression of genes involved with lipid metabolism, oocyte 38 competence and apoptosis in COCs and blastocysts.

Keywords: insulin-like growth factor-binding protein, cumulus-oocyte complexes, *in vitro*embryo production, cryopreservation, cattle.

41

42 1 INTRODUCTION

43 Insulin-like growth factor-1 (IGF-1) is one of several growth factors involved in 44 oocyte maturation, specifically in influencing gonadotrophin action during folliculogenesis 45 and meiosis progression (Mazerbourg & Monget, 2018; Sakaguchi et al., 2002). The IGF system is composed of IGF-1 and IGF-2, along with their receptors IGF-1R and IGF-2R 46 47 (Kane, Morgan, & Coonan, 1997; Mazerbourg & Monget, 2018). In the bovine reproductive 48 system, IGF-1 functions have been confirmed by IGF-1R presence in the oocyte (Armstrong 49 et al., 2000; Satrapa, Castilho, et al., 2013; Satrapa, Razza, et al., 2013) and throughout stages 50 of early embryonic development, including the zygote, 2-4 cell embryo, 8-16 cell embryo, morula, and blastocyst (Yaseen, Wrenzycki, Herrmann, Carnwath, & Niemann, 2001). This system stimulates cell proliferation, differentiation, migration, survival, and metabolism (Duan et al., 2005). In the reproductive system, these processes are important to oocyte maturation (Sakaguchi et al., 2002; Sirotkin, Dukesová, Makarevich, Kubek, & Bulla, 2000; Xia, Tekpetey, & Armstrong, 1994) and embryonic development (Velazquez, Zaraza, Oropeza, Webb, & Niemann, 2009).

57 IGF binding proteins (IGFBPs) and pregnancy-associated plasma protein-A (PAPP-A) 58 both modulate IGF action during embryonic development. The former group modulates the 59 IGF action during cumulus-oocyte complexes (COCs) maturation and in subsequent growth 60 stages (Harvey, Kind, & Thompson, 2007; Heyner, Shi, Garside, & Smith, 1993; Kaye & 61 Harvey, 1995; Luciano, Modina, Gandolfi, Lauria, & Armstrong, 2000). Six IGFBP types (1-62 6) (Mazerbourg & Monget, 2018) have been reported in oocytes and bovine embryos 63 (Lonergan, Rizos, Gutierrez-Adan, Fair, & Boland, 2003; Satrapa, Castilho, et al., 2013; 64 Satrapa, Razza, et al., 2013; Sawai et al., 2005).

The PAPP-A is a protein produced by the placenta (Petry et al., 2017) and isolated in 1974 from normal human pregnancy serum (Lin, Galbert, Kiefer, Spellacy, & Gall, 1974; Petry et al., 2017). In women *PAPPA* knockout, incomplete fetal development and deformities were observed (Lawrence et al., 1999), and in rodents, the PAPPA knockout mouse subjected to ovarian stimulation ovulated fewer COCs (Nyegaard et al., 2010).

In cattle, PAPP-A has been found to increase IGF-1 hrough degrading IGFBPs, including IGFBP2, 4, and 5 in cattle (Mazerbourg, Bondy, Zhou, & Monget, 2003; Rivera & Fortune, 2003). A cross-breed comparison found higher *PAPPA* mRNA expression, but decreased *IGF1*, *IGF1R*, *IGFBP2*, and *IGFBP4* expression in Nelore cows than in Holstein cows (Satrapa, Castilho, et al., 2013). Corroborating with these previous findings, the abundance of *PAPPA* mRNA was greater in oocytes and cumulus cells of Gir and Holstein ×
Gir hybrids than in Holstein cows (Lopes et al., 2017).

However, most studies only investigated the effects of direct exogenous IGF-1 addition during *in vitro* maturation (IVM) of bovine oocytes (Meiyu, Liu, & Roth, 2015; Sakaguchi et al., 2002; Zhandi, Towhidi, Nasr-Esfahani, Eftekhari-Yazdi, & Zare-Shahneh, 2009). We therefore know very little regarding how PAPP-A modulates IGF-1 during IVM and how this modulation affects *in vitro* embryo production in cattle and COCs or blastocyst quality.

Here, we hypothesized that exogenous PAPP-A addition would release IGF-1 from IGFBPs, thus increasing IGF-1 in the IVM medium. Therefore, our aim was to investigate PAPP-A action on IGF-1, along with any subsequent impact on embryo production and blastocyst viability post-cryopreservation. We were also interested in how PAPP-A influences bovine COC and blastocyst transcriptional profiles.

88

89 **2 RESULTS**

90 2.1 IGF-1 quantification in IVM medium and accompanying effects on *in vitro*91 production and survival post warming

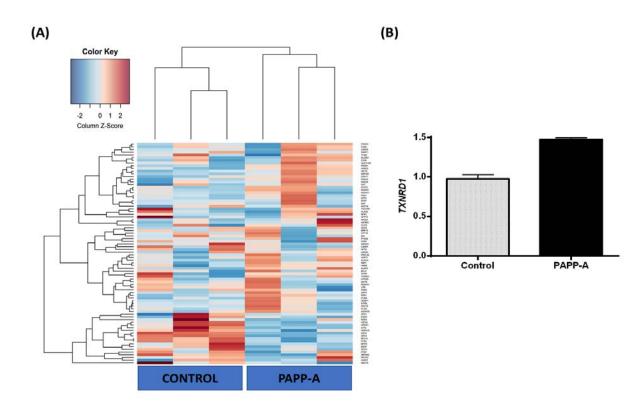
After IVM, PAPP-A addition increased IGF-1 in IVM medium by 1.27-fold compared with control (p = 0.030; Table 1). However, cleavage and blastocyst rates did not differ between groups (p = 0.694 and p = 0.539, respectively; Table 1). After *in vitro* culture (IVC), expanded blastocysts were vitrified and then warmed. Re-expansion rate after 3 and 24 h did not differ between groups (p > 0.05; Table 1).

- 97
- 98

99 **Table 1.** IGF-1 quantification, blastocyst yield, and embryonic survival. In the IVM, IGF-1 100 data are represented as fold change. To IVP, cleavage and blastocyst rates are represented as 101 mean (%) \pm S.E.M and n = replicate; and blastocyst re-expansion is shown as percentages 102 evaluated by chi-square test.

Groups	IVM IGF-1 [†]	IVP		Blastocyst Re-expansion	
		Cleavage	Blastocysts	3 hours	24 hours
$\frac{\text{Control}}{(n = 360 \text{ COCs})}$	1 ± 0.0	83.7 ± 1.66	38 ± 1.79	56 (28/50)	54 (27/50)
PAPP-A $(n = 360 \text{ COCs})$	$1.27\pm0.09*$	84.6 ± 1.61	38.2 ± 2.71	56 (37/66)	43.9 (29/66)

103 $p \le 0.05$ in the same column


104 † insulin-like growth factor 1

105 IVM, *in vitro* maturation; IVP, *in vitro*-embryo production; COCs, cumulus-oocyte complexes

106

107 2.2 Transcript profile in oocytes, cumulus cells, and blastocysts

We compared gene expression patterns between experimental and control groups using heat maps. In oocyte samples, only *TXNRD1* expression (based on mRNA abundance) differed significantly between treatments, being higher for PAPP-A-treated cells ($p \le 0.05$; Figure 1).

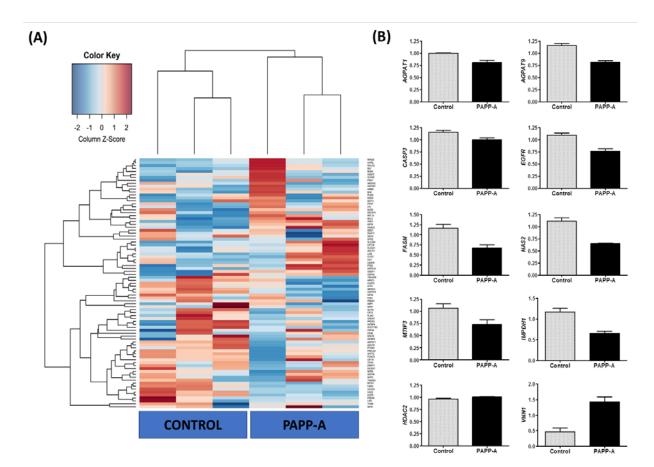
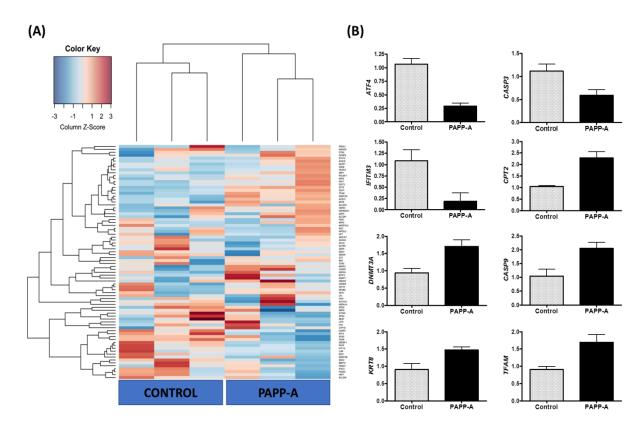
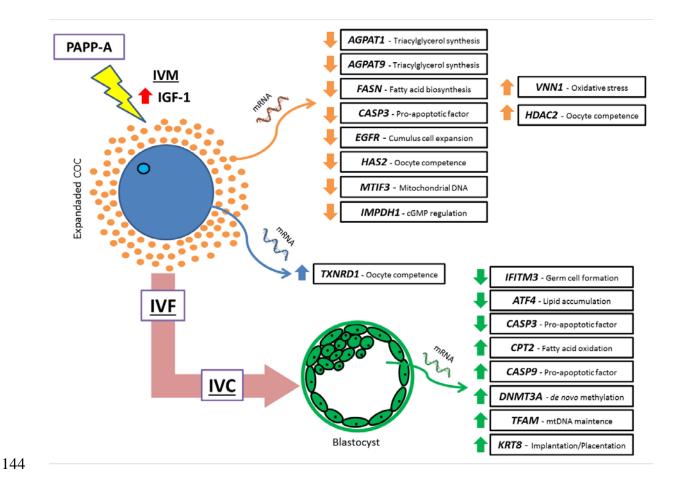


Figure 1. (A) Heat map showing gene expression differences between control and PAPP-A data in oocytes. Rows and columns are clustered by Euclidean distance and Ward-linkage hierarchical clustering. Color intensity represents the degree of between-group differences (based on Spearman's correlations). (B) Relative abundance of differentially expressed genes in oocytes ($p \le 0.05$). Target genes were normalized with reference genes (*GAPDH*, *PPIA*, and *ACTB*), using the 2(^{- Δ Ct}) method. Data are means \pm S.E.M. of three biological replicates tested by t test.

In cumulus cells, *VNN1* and *HDAC2* expression were higher in the PAPP-A group,
whereas *AGPAT1*, *AGPAT9*, *EGFR*, *IMPDH1*, *FASN*, *HAS2*, *CASP3*, and *MTIF3* expression


123 were lower ($p \le 0.05$; Figure 2).


Figure 2. (A) Heat map showing gene expression differences between control and PAPP-A data in cumulus cells. Rows and columns are clustered by Euclidean distance and Ward-linkage hierarchical clustering. Color intensity represents the degree of between-group differences (based on Spearman's correlations). (B) Relative abundance of differentially expressed genes in cumulus cells ($p \le 0.05$). Target genes were normalized with reference genes (*GAPDH*, *PPIA*, and *ACTB*), using the 2(^{- Δ Ct}) method. Data are means \pm S.E.M. of three biological replicates tested by t test.

In blastocysts, the PAPP-A group showed higher *DNMT3A*, *CASP9*, *CPT2*, *TFAM*, and *KRT8* expression, but lower *ATF4*, *IFITM3*, and *CASP3* expression ($p \le 0.05$; Figure 3). To summary all data, a biological model was performed (Figure 4).

Figure 3. (A) Heat map showing gene expression differences between control and PAPP-A data in blastocysts. Rows and columns are clustered by Euclidean distance and Ward-linkage hierarchical clustering. Color intensity represents the degree of between-group differences (based on Spearman's correlations). (B) Relative abundance of differentially expressed genes in blastocysts ($p \le 0.05$). Target genes were normalized with reference genes (*GAPDH, PPIA, ACTB* and *SDHA*), using the 2(^{- Δ Ct}) method. Data are means \pm S.E.M. of three biological replicates tested by t test.

145 Figure 4. Effects of PAPP-A addition during in vitro bovine embryo production. In summary, we propose that 146 the greater amount of IGF-1 into maturation medium by the PAPP-A action was able to promote a down-147 regulation in cumulus cells and an up-regulation in blastocysts of transcripts related to the quality of COCs and 148 blastocysts, particularly, cellular pathways involved in lipid metabolism, apoptosis, and embryonic development. 149 The yellow ray indicates the PAPP-A action on IVM of bovine COC. The orange, blue and green arrows 150 indicates mRNA abundance levels in PAPP-A group (cumulus cells, oocytes and blastocysts; respectively). The 151 red arrow indicates the IGF-1 into the IVM medium. PAPP-A: pregnancy-associated plasma protein-A, IGF-1: 152 insulin-like growth factor 1, COC: cumulus-oocyte complex, IVM: in vitro maturation, IVF: in vitro fertilization 153 and IVC: in vitro culture. The genes are represented in the bold boxes.

For a list of target genes that were not differentially expressed (p > 0.05) in tested cells, please see supplementary information (Table S1, S2, and S3).

- 157
- 158

159 **3 DISCUSSION**

160 To our knowledge, this study is the first to quantify IGF-1 after PAPP-A addition 161 during IVM and examine the resultant effects on *in vitro* embryo production. Previous studies 162 examining how exogenous IGF-1 addition influences cleavage rates and embryonic 163 production have yielded inconsistent results. For instance, cleavage rates have been reported 164 to increase (Palma, Müller, & Brem, 1997) or remain unaffected (Block, Wrenzycki, 165 Niemann, Herrmann, & Hansen, 2008; Green & Day, 2013; Matsui, Takahashi, Hishinuma, & 166 Kanagawa, 1995). Similarly, IGF-1 addition has both increased blastocyst rate (Green & Day, 167 2013; Matsui et al., 1995; Palma et al., 1997) and exerted no effect (Block et al., 2008). 168 However, although we found that PAPP-A addition did no improve blastocyst production and 169 cleavage rate, this result does not imply that embryonic quality would remain unaffected 170 (Block et al., 2008).

171 In vitro embryos are more sensitive to cryopreservation because of lipid accumulation 172 in their structure (Accorsi, Leão, Rocha-Frigoni, Perri, & Mingoti, 2016; Block et al., 2003; 173 Meneghel et al., 2017) but the mechanism of this accumulation is unclear (Leão et al., 2015). 174 Here, we found that PAPP-A treatment did not alter re-expansion rates of warmed blastocysts 175 after 3 and 24 h. Although embryonic survival rate did not improve after warming, PAPP-A 176 treatment increases IGF-1 (27% over) and modulates the expression of genes related to 177 apoptotic effects, oocyte competence, and lipid metabolism in oocytes, cumulus cells and 178 blastocysts.

The most interesting results were related to the regulation of genes associated with COC and blastocyst quality. Among oocytes, only one gene experienced altered expression (elevated transcript abundance) under PAPP-A treatment: *TXNRD1*, associated with oocyte competence and highly expressed in cells with strong proliferative activity (Jakupoglu et al., 2005). *TXNRD1* knockout mice showed embryonic lethality (Bondareva et al., 2007). On the 184 other hand, differences of gene expression were more apparent in cumulus cells, especially in 185 genes related to lipid metabolism, apoptosis, oocyte competence, oxidative stress, meiosis 186 resumption, and mitochondrial DNA transcription. In the PAPP-A group, AGPAT1, AGPAT9, 187 FASN, CASP3, EGFR, HAS2, MTIF3, and IMPDH1 were down-regulated, while HDAC2 and 188 VNN1 were up-regulated. Additionally, lipid metabolism genes AGPAT1, AGPAT9, and 189 FASN differed in transcript profiles under PAPP-A treatment. The first two genes participate 190 in triacylglycerol synthesis and membrane-lipid biosynthesis (Körbes, Kulcheski, Margis, 191 Margis-Pinheiro, & Turchetto-Zolet, 2016; Zeng et al., 2017). The third gene acts on long 192 fatty acid biosynthesis (Ji et al., 2014; Z. Yang, Cappello, & Wang, 2015).

193 We also observed the modulation of three genes related to competence in cumulus 194 cells, specifically the down-regulation of EGFR and HAS2, as well as the up-regulation of 195 HDAC2. The first gene is involved in oocyte maturation and stimulates cumulus expansion 196 through regulating hyaluronic acid synthesis (Bhardwaj, Ansari, Parmar, Chandra, & Sharma, 197 2016; Nagyova, 2012). Next, HAS2 expression is correlated with oocyte developmental 198 competence (Dunning et al., 2007), and down-regulation dampens hyaluronic acid synthesis 199 (Thompson, Lane, & Gilchrist, 2007). Finally, HDAC2 is expressed in the oocyte MII stage, 200 suggesting its involvement in regulatory pathways affecting oocyte developmental 201 competence (S. Wang et al., 2010; Xu, Chen, Zhang, Wei, & Cao, 2015). In addition, IGF 202 components present in COCs accelerate nuclear maturation and promote oocyte competence 203 (Satrapa, Castilho, et al., 2013). Even down-regulation of the first two genes, which would 204 lead to the impairment of oocyte competition, there was no difference in the rates of cleavage 205 and blastocyst production indicating, indirectly, high meiotic resumption.

Still in cumulus cells, *VNN1* and *CASP3* are respectively up and down-regulated. *VNN1* is a regulator of oxidative stress response, as well as a potential marker for follicular growth and differentiation (Nivet, Vigneault, Blondin, & Sirard, 2013). Its activation may be

209 the result of decreased oocyte competence from oxidative stress (Nivet et al., 2013). The 210 second gene is a pro-apoptotic factor activated only during apoptotic processes; IGF-1 is 211 thought to increase CASP3 levels (Raile et al., 2003). The increase of an oxidative stress 212 controller and the decrease of a pro-apoptotic factor could suggest a positive effect of IGF-1, 213 mediated by PAPP-A. In the same way, IMPDH1 was down regulated in cumulus cells. The 214 IMPDH1 is specifically associated with cGMP regulation, which influences meiosis 215 resumption (Wigglesworth et al., 2013). The MTIF3 gene is involved in mitochondrial DNA 216 transcription, and its expression decreases during the germinal vesicle (GV) to oocyte MII 217 stages (Mtango, Harvey, Latham, & Brenner, 2008). Taken together, the modulations of both 218 genes were related to normal oocyte maturation and reflect the further in vitro embryo 219 development during PAPP-A treatment.

220 Similar to cumulus cells, differential gene expression in blastocysts was related 221 to apoptosis, DNA methylation, gastrulation, energetic metabolism, implantation/placentation, 222 and lipid metabolism. The latter function is unsurprising given the known role of IGFs as 223 regulators of lipogenesis (Ruan & Lai, 2010). Lipid-metabolism genes ATF4 and CPT2 were 224 respectively down and up-regulated in PAPP-A blastocysts. Elevated ATF4 expression is 225 related to high lipid exposure to oocytes and embryos that causes embryonic stress (Wu et al., 226 2010; X. Yang et al., 2012). Thus, PAPP-A down-regulation of ATF4 reduced lipid 227 availability to the embryo. Similarly, CPT2 is associated with ATP production and lipid 228 reduction from fatty acid oxidation (Gentile et al., 2004; Guo et al., 2017). As described 229 above, we observed that post immediate re-expansion and 24 h re-expansion are similar and 230 although the IGF-1 had not been improved on embryo survival after cryopreservation, the 231 PAPP-A treatment increased the expression of genes related to lipid metabolism in both 232 cumulus cells (AGPAT1, AGPAT9, and FASN) and blastocysts (ATF4 and CPT2) and maybe 233 this regulation could impact the lipids accumulation during in vitro embryo production,

probably decreasing lipids accumulation. However, future studies should further examine thelink between PAPP-A and lipid metabolism in COCs and blastocysts.

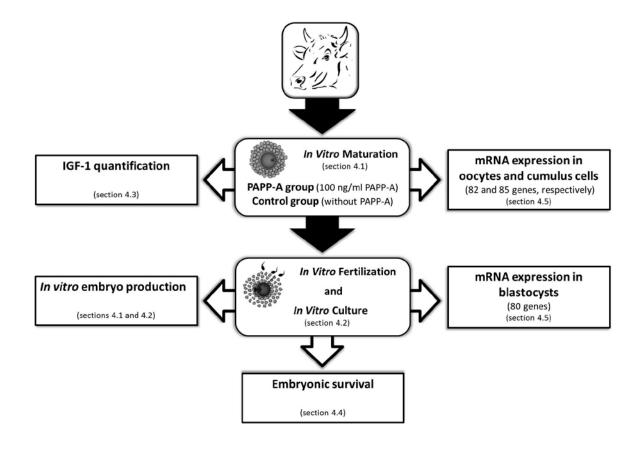
Caspases are the regulators of apoptosis both extrinsic and intrinsic pathways, having
CASP9 as CASP3 activator, and CASP3 cell death performer (Deb, Dey, Bang, Lee, & Kong,
2012). PAPP-A treatment also affected apoptosis genes in blastocysts, specifically upregulating *CASP9* and down-regulating *CASP3*.

Other genes up-regulated under PAPP-A treatment were *DNMT3A*, *TFAM*, and *KRT8* in blastocysts. The first gene is directly involved in *de novo* methylation of hemi-methylated and unmethylated DNA as required for the *de novo* methylation, maintaining this process. DNA methylation acts on the repression or activation of genes related to embryonic development, including mechanisms of cell differentiation, tumorigenesis, and aging (Uysal, Akkoyunlu, & Ozturk, 2015). A similar *de novo* methylation gene (*IMPDH1*) was also present in cumulus cells, but was down-regulated.

247 Next, high TFAM expression is necessary for mtDNA maintenance (Rantanen, 248 Jansson, Oldfors, & Larsson, 2001; Silva & Larsson, 2002), as demonstrated in TFAM 249 knockout experiments that abolished mtDNA in the respiratory chain (J. Wang, Silva, 250 Gustafsson, Rustin, & Larsson, 2001). The third gene is associated with placenta development 251 and subsequent implantation (Bunel et al., 2015; Machado et al., 2012); KRT8 appears to be 252 essential for bovine embryonic development, as low transcript levels have been linked to 253 embryonic lethality (Machado et al., 2012). Finally, we also observed down-regulation of 254 IFITM3 in PAPP-A blastocysts. This gene is a germ cell formation marker (Hu et al., 2015), 255 but its exact role remains poorly understood (Shoubridge & Wai, 2007). In summary, the 256 higher expression of DNMT3A, TFAM, and KRT8, together with down-regulation of IFITM3 257 could reflect on blastocyst with remarkable characteristics to increases the possibility of 258 pregnancy probably improving a better oxidative metabolism, coordinating adequately

embryonic DNA methylation to reach a correct implantation and later the maintenance ofgestation.

We concluded that PAPP-A addition during IVM elevated IGF-1 without affecting cleavage rate, embryo yield, and post-devitrification embryonic survival. The treatment also positively modulated genes related to COC and blastocyst quality. Specifically, these genes are involved in lipid metabolism, apoptosis, and the development of blastocyst competence (e.g., regulation of implantation and initial embryo differentiation).


266

267 4 MATERIAL AND METHODS

268 Unless otherwise noted, all products were purchased from Sigma-Aldrich Co. (St. Louis, MO,

269 USA). The experimental design is shown in Fig. 5.

270

272

Figure 5. Experimental design to investigate the effects of the PAPP-A addition to the IVM medium of bovine
COCs (20 per group). We investigated the effects of the PAPP-A on IGF-1 into IVM medium, gene expression
in COCs, *in vitro* embryo production, gene expression in blastocysts and embryonic cryosurvival. PAPP-A:
pregnancy-associated plasma protein-A, COC: cumulus-oocyte complex and IGF-1: insulin-like growth factor 1.

277

278 **4.1** *In vitro* maturation of COCs

Ovaries of predominantly *Bos taurus indicus* were obtained from a local abattoir (Lençóis Paulista, São Paulo, Brazil; 22°35′41.8″S, 48°47′19.4″W) and transported to the laboratory in a thermal container (36°C) containing saline solution (0.9% w/v). Ovarian follicles (diameter 3–8 mm) were aspirated with a syringe and needle (18G). A stereomicroscope was used to select COCs with homogeneous cytoplasm and surrounded by three cumulus-cell layers for the experiment. The time between ovary collection and COC selection did not exceed 3 hours.

Selected COCs (n = 600) were incubated in IVM medium, comprising TCM199 with bicarbonate, bovine serum albumin (BSA, 5 mg/mL), pyruvate (0.22 mg/mL; 100 mM solution), amikacin (75 mg/mL), and follicular stimulating hormone (FSH, 0.1 UI/mL solution; Gonal-f, Merck Serono, Bari, Italy).

290 The COCs were randomly divided in two groups (20 per group): untreated control and 291 PAPP-A treatment (100 ng/mL rhPappalysin-1; R&D Systems, Minneapolis, MN, USA). 292 Both groups were deposited in 90 µL drops of IVM medium and covered with silicone oil 293 (Quimesp Química, Guarulhos, SP, Brazil) for 24 h in a controlled environment (5.5% CO₂, 294 humidified air, 38.5°C). The final concentration of 100 ng/mL PAPP-A was selected for the 295 main experiment based on a pilot study testing 1, 10, and 100 ng/mL; only the highest 296 concentration caused observable gene expression differences in oocytes, cumulus cells, and 297 blastocysts.

At the end of each IVM, the medium was recovered for quantification of IGF-1 (six replicates; section 4.2). Fifteen replicates were performed: six for *in vitro* embryo production (section 4.3), three for embryonic cryosurvival (section 4.4), three for gene expression in oocytes and cumulus cells (section 4.5), and three for gene expression in blastocysts (section 4.5).

303

304 **4.2** *In vitro* fertilization and culture

305 Mature COCs were transferred to TALP drops (Tyrode's medium base) containing BSA (6 306 mg/mL), pyruvate (0.22 mg/mL; 100 mM), amikacin (75 µg/mL), heparin (2 mg/mL), and 307 PHE solution (44 µL/mL; 0.2 nM penicillamine; 0.1 mM hypotaurine; and 1 mM 308 epinephrine). Frozen-thawed semen from a Nelore bull (CRV Lagoa, Sertãozinho, SP, Brazil) was separated with a Percoll gradient (90% and 45%), diluted to 1×10^6 sperm/mL, and 309 310 added into each drop (6 µL of semen/drop). After in vitro fertilization (18-20 h, 5.5% CO₂, 311 humidified air, and 38.5°C), probable zygotes were denuded via vortexing and transferred to 312 culture medium (SOFaaci [Synthetic Oviduct Fluid] with 5 mg/mL BSA, 2.5% fetal calf 313 serum (FCS), and 13 mM pyruvate). Embryos were cultured for 7 d in a humid atmosphere 314 with controlled gases (5% CO_2 , 5% O_2 , and 90% N_2) at 38.5°C.

Fifty microliters of medium was renewed on day 3 and 5 of culture. Cleavage rate of total fertilized COCs was evaluated (n = 6 replicates) on day 3. On day 7, blastocyst formation rate was determined (n = 6 replicates) before they were collected and stored in RNA-free microtubes at -80°C, until RT-qPCR.

319 Three replicates of *in vitro* embryo production were also performed to obtain 320 expanded blastocysts for vitrification.

321

4.3 Quantification of IGF-1 with ELISA

To measure IGF-1 in IVM medium, in-house ELISA tests were performed. Medium from both treated and control groups were collected (n = 6) after 24 h of maturation, stored in 1.5 mL microtubes, and kept at -80°C until quantification.

Each well of a 96-well microplate (Thermo Fisher Scientific, Waltham, MA, USA) was coated with 100 μ L of 0.0522 M carbonate buffer (pH = 9.6), containing 0.25 μ g of goat anti-rabbit IgG. After overnight incubation at 4°C, a microplate washer (Thermo Fisher Scientific, Waltham) was used to wash the plate twice with 300 μ L/well of 0.05% Tween 80 solution. Next, 300 μ L of 1% PBS-BSA (pH = 7.2) was added per well as a blocking agent.

332 Because PAPP-A was assumed to have disrupted the bond between IGF-1 and 333 IGFBPs, extraction of bound IGF-1 was not performed. Total IGF-1 was quantified with 334 ELISA using the biotin-streptavidin-peroxidase amplification system in a competitive assay. Each well contained 60 µL of control or experimental medium, 100 µL of 1:250.000 diluted 335 336 anti-IGF-1 antibody (Harbor-UCLA Medical Center, Carson, CA, USA), and 100 µL of 337 biotinylated IGF-1 (0.06 ng/well). After 24 h of incubation at 4°C, two washes were 338 performed. Next, 2.5 mU peroxidase/100 µL was added per well (streptavidin-POD conjugate 339 500 U/mL; Roche, São Paulo, SP, Brazil).

340 Microplates were covered to block light, incubated for 30 min at 4°C, and then washed 341 twice before the addition of 100 μ L substrate per well, comprising 2 mM 3.3',5.5'-342 tetramethylbenzidine (TMB), 100 mM citric acid, 10.63 mM urea peroxide, 126.8 mM 343 Na₂HPO₄, and 4% DMSO.

344 Covered microplates were incubated again for 40 min at 37°C, followed by the 345 addition of 2 M sulfuric acid (30 μ L/well) to stop substrate oxidation. Optical density 346 determination at 450 nm was immediately performed with a Tecan microplate reader. For dosage calculation, concentrations of standards were first log-transformed. Next, optical densities were converted to percentage of maximum binding (% B/B_0) and then transformed with the logit function. Transformations were performed through interpolation after linear regression.

351

352 4.4 Vitrification/warming and subsequent culture

353 On day 7 of *in vitro* culturing, expanded control (n = 50) and PAPP-A (n = 66)354 blastocysts were vitrified and warmed (three replicates/group) to evaluate post-warming 355 embryonic survival.

Procedures followed protocol from Vitri-Ingá[®] (Ingámed, Maringá, PR, Brazil). High-356 357 quality expanded blastocysts were selected for vitrification following previous methods (Leão 358 et al., 2015), removed from culture medium, and transferred to a plate containing 20 µL of 359 maintenance solution. They were next transferred to equilibrium solution for 5 min and then 360 to three 20 µL droplets of vitrification solution for 60 s. During the final 20 s, all embryos 361 were removed, along with the last vitrification-solution droplet, and deposited on the end of a 362 0.7 mm thick polypropylene rod (up to eight embryos/rod), then dipped directly into liquid 363 nitrogen (-196°C). Rods containing vitrified embryos were stored in a cryogenic cylinder at -364 196°C until warming.

Rods were removed from the cryogenic cylinder and immediately immersed for 1 min in 100 μ L of warming solution 1 at 37°C. Subsequently, they were transferred to 50 μ L of warming solution 2 for 3 min, and to 50 μ L of warming solution 3 for 5 min. *In vitro* survival (i.e., embryonic re-expansion rates) were determined at 3 and 24 h post-reheating, upon placing embryos in four-well plates each containing 500 μ L of SOF culture medium (20% FCS). Embryos were considerable survivors when presented blastocoel re-expansion without 371 presence of vacuoles. The embryonic re-expansion rate was calculated by the number of372 surviving embryos divided by the total of heated embryos.

373

4.5 Determining gene expression in cumulus cells, oocytes, and blastocysts through RTqPCR

After 24 h of IVM, oocyte and cumulus cells (20 each/pool; three pools/experimental or control group) were separated through successive pipetting and vortexing. The oocyte (cumulus free) was stored at -80°C until RNA extraction. The cumulus cells resulting from the separation (vortexing) was stored at -80°C until RNA extraction.

Total RNA extraction was performed using Microkit RNeasy[®] (Qiagen, Valencia, CA, USA), following manufacturer's protocol. Total RNA concentration was measured in a Nanodrop 2000[®] Spectrophotometer. The 2100 Bioanalyzer[®] system (Agilent, Santa Clara, CA, USA) was used to analyze RNA quality. Only samples with an RNA Integrity Number (RIN) above seven (scale of 0-10) were used.

After IVC, blastocysts were frozen (-80°C) as samples for RNA extraction (one replicate = three blastocysts; five pools/group). Total RNA was extracted using the PicoPure[®] RNA Isolation Kit (Thermo Fisher Scientific, Foster City, CA, USA) following manufacturer's protocol. Concentrations of total blastocyst RNA concentration and quality were determined following the same methods as for oocyte/cumulus cell RNA.

390 Reverse transcription of RNA was performed following manufacturer protocol in the 391 High Capacity Kit (Applied Biosystem[®], Foster City, CA, USA). 100 and 50 ng of RNA per 392 sample was used for cumulus cells and blastocysts, respectively. All oocyte samples ($10 \mu L$) 393 were used for reverse transcription.

Gene expression analysis was performed using Applied Biosystems[™] TaqMan[®]
 Assays, specific for *Bos taurus*. Target genes numbered 82 in oocyte samples (Table S4), 85

in cumulus cell (Table S5), and 80 in blastocysts (Table S6). Prior to RT-qPCR, sequencespecific pre-amplification was performed as follows: 1.25 μ L assay mix (Taqman[®] Assay pooled to a final concentration of 0.2× per assay), 2.5 μ L TaqMan PreAmp Master Mix (Thermo Fisher Scientific, Foster City), and 1.25 μ L cDNA (5 ng/ μ L). The pre-amplification thermocycling schedule was 95°C for 10 min (reactivation), 95°C for 15 s (denaturing), and 14 cycles of 60°C for 4 min (annealing and amplification). Amplicons were then diluted sixfold.

403 The RT-qPCR reaction solution consisted of 2.25 µL cDNA (pre-amplified products), 404 2.5 µL of TaqMan Universal PCR 2× Master Mix (Thermo Fisher Scientific, Foster City), and 405 0.25 µL of 20× GE Sample Loading Reagent (Fluidigm, San Francisco, CA, USA). The assay 406 solution contained 2.5 µL of 20× TaqMan Gene Expression Assay (Thermo Fisher Scientific, 407 Foster City) and 2.5 µL of 2× Assay Loading Reagent (Fluidigm). Data collection involved 408 the 96.96 Dynamic ArrayTM Integrated Fluidic Circuits (Fluidigm) chip. After priming, the 409 chip was loaded with 5 µL each of assay and sample solutions. The Biomark HD System 410 (Fluidigm) and TaqMan GE 96 \times 96 Standard was used for RT-qPCR. Thermocycling 411 conditions comprised one Thermal Mix stage (50°C for 2 min, 70°C for 20 min, 25°C for 10 412 min), one Hot Start stage (50°C for 2 min and 95°C for 10 min), followed by 40 cycles of 413 denaturation (95°C for 15 s), annealing, and extension (60°C for 60 s).

414 Relative expression was calculated using Δ Ct (Livak & Schmittgen, 2001) and 415 transformed into fold change (2^{- Δ Ct}). To normalize oocyte and cumulus cell data, geometric 416 means of housekeeping genes *GAPDH*, peptidyl isomerase A (*PPIA*), and β-actin (*ACTB*) 417 genes were used. Blastocyst data normalization involved the additional inclusion of succinate 418 dehydrogenase complex flavoprotein subunit A (*SDHA*).

419

421 **4.6 Statistical analysis**

422 Cleavage, blastocyst development, and embryonic survival rates were calculated as 423 percentages and arcsine-transformed. The IGF-1 concentration was expressed as fold change. 424 The IGF-1, cleavage, and blastocysts rate were subjected to t-test. To embryonic survival, chi-425 square test was applied. For gene expression profile the bioinformatics analysis was 426 R version 3.0.1 (http://www.r-project.org) and performed using Bioconductor 427 (http://www.bioconductor.org/). Gene expression heat maps were generated using the 428 averaged control group data for normalization. Target genes were sorted with hierarchical 429 clustering using the *heatplot* function from the *made4* R package (Culhane, Thioulouse, 430 Perrière, & Higgins, 2005). The analyses were performed using JMP software (SAS Institute, 431 Cary, NC, USA). Differences were considered significant when $p \le 0.05$.

432

433 ACKNOWLEDGEMENTS

The authors would like to thank the Multi-user Laboratory of Phytomedicines, Pharmacology, and Biotechnology (FitoFarmaTec), São Paulo Research Foundation (FAPESP), Coordination for the Improvement of Higher Education Personnel (CAPES), and National Council for Scientific and Technological Development (CNPq).

438 The authors are also grateful for the technical assistance of Raquiel Bueno Rodrigues439 and Andressa Carvalho.

440

441 **REFERENCES**

All the references were performed using the APA 6th style from EndNote Web extension to
Microsoft Word 2010.

444

Accorsi, M. F., Leão, B. C., Rocha-Frigoni, N. A., Perri, S. H., & Mingoti, G. Z. (2016).
 Reduction in cytoplasmic lipid content in bovine embryos cultured in vitro with

- 447linoleic acid in semi-defined medium is correlated with increases in
cryotolerance. Zygote, 24, 485-494. doi:10.1017/S0967199415000428
- Armstrong, D. G., Gutierrez, C. G., Baxter, G., Glazyrin, A. L., Mann, G. E., Woad, K.
 J., . . . Webb, R. (2000). Expression of mRNA encoding IGF-I, IGF-II and type
 1 IGF receptor in bovine ovarian follicles. *J Endocrinol, 165*(1), 101-113.
- Bhardwaj, R., Ansari, M. M., Parmar, M. S., Chandra, V., & Sharma, G. T. (2016).
 Stem Cell Conditioned Media Contains Important Growth Factors and Improves In Vitro Buffalo Embryo Production. *Anim Biotechnol, 27*(2), 118-125. doi:10.1080/10495398.2015.1118383
- 456 Block, J., Drost, M., Monson, R. L., Rutledge, J. J., Rivera, R. M., Paula-Lopes, F. F., . . . Hansen, P. J. (2003). Use of insulin-like growth factor-I during embryo 457 458 culture and treatment of recipients with gonadotropin-releasing hormone to 459 increase pregnancy rates following the transfer of in vitro-produced embryos to 460 heat-stressed. lactating COWS. Anim Sci. 81(6), 1590-1602. J 461 doi:10.2527/2003.8161590x
- Block, J., Wrenzycki, C., Niemann, H., Herrmann, D., & Hansen, P. J. (2008). Effects
 of insulin-like growth factor-1 on cellular and molecular characteristics of
 bovine blastocysts produced in vitro. *Mol Reprod Dev, 75*(5), 895-903.
 doi:10.1002/mrd.20826
- Bondareva, A. A., Capecchi, M. R., Iverson, S. V., Li, Y., Lopez, N. I., Lucas, O., ...
 Schmidt, E. E. (2007). Effects of thioredoxin reductase-1 deletion on
 embryogenesis and transcriptome. *Free Radic Biol Med, 43*(6), 911-923.
 doi:10.1016/j.freeradbiomed.2007.05.026
- Bunel, A., Jorssen, E. P., Merckx, E., Leroy, J. L., Bols, P. E., & Sirard, M. A. (2015).
 Individual bovine in vitro embryo production and cumulus cell transcriptomic
 analysis to distinguish cumulus-oocyte complexes with high or low
 developmental potential. *Theriogenology*, 83(2), 228-237.
 doi:10.1016/j.theriogenology.2014.09.019
- Culhane, A. C., Thioulouse, J., Perrière, G., & Higgins, D. G. (2005). MADE4: an R
 package for multivariate analysis of gene expression data. *Bioinformatics,*21(11), 2789-2790. doi:10.1093/bioinformatics/bti394
- Deb, G. K., Dey, S. R., Bang, J. I., Lee, J. G., & Kong, I. K. (2012). 9-cis Retinoic acid
 inhibits cumulus cell apoptosis during the maturation of bovine cumulusoocyte-complexes. *J Anim Sci, 90*(6), 1798-1806. doi:10.2527/jas.2011-4340
- 481 Duan, X. X., Ou, J. S., Li, Y., Su, J. J., Ou, C., Yang, C., . . . Ban, K. C. (2005).
 482 Dynamic expression of apoptosis-related genes during development of 483 laboratory hepatocellular carcinoma and its relation to apoptosis. *World J* 484 *Gastroenterol, 11*(30), 4740-4744.
- 485 Dunning, K. R., Lane, M., Brown, H. M., Yeo, C., Robker, R. L., & Russell, D. L.
 486 (2007). Altered composition of the cumulus-oocyte complex matrix during in
 487 vitro maturation of oocytes. *Hum Reprod,* 22(11), 2842-2850.
 488 doi:10.1093/humrep/dem277
- Gentile, L., Monti, M., Sebastiano, V., Merico, V., Nicolai, R., Calvani, M., . . .
 Zuccotti, M. (2004). Single-cell quantitative RT-PCR analysis of Cpt1b and
 Cpt2 gene expression in mouse antral oocytes and in preimplantation
 embryos. *Cytogenet Genome Res, 105*(2-4), 215-221. doi:10.1159/000078191
- Green, C. J., & Day, M. L. (2013). Insulin-like growth factor 1 acts as an autocrine
 factor to improve early embryogenesis in vitro. *Int J Dev Biol, 57*(11-12), 837844. doi:10.1387/ijdb.130044md
- 496 Guo, J., Lu, W. F., Liang, S., Choi, J. W., Kim, N. H., & Cui, X. S. (2017). Peroxisome

- 497 proliferator-activated receptor δ improves porcine blastocyst hatching via the 498 regulation of fatty acid oxidation. *Theriogenology*, *90*, 266-275. 499 doi:10.1016/j.theriogenology.2016.11.018
- Harvey, A. J., Kind, K. L., & Thompson, J. G. (2007). Regulation of gene expression
 in bovine blastocysts in response to oxygen and the iron chelator
 desferrioxamine. *Biol Reprod,* 77(1), 93-101.
 doi:10.1095/biolreprod.106.058826
- Heyner, S., Shi, C. Z., Garside, W. T., & Smith, R. M. (1993). Functions of the IGFs in
 early mammalian development. *Mol Reprod Dev, 35*(4), 421-425; discussion
 425-426. doi:10.1002/mrd.1080350417
- Hu, X., Lu, H., Cao, S., Deng, Y. L., Li, Q. J., Wan, Q., & Yie, S. M. (2015). Stem
 cells derived from human first-trimester umbilical cord have the potential to
 differentiate into oocyte-like cells in vitro. *Int J Mol Med, 35*(5), 1219-1229.
 doi:10.3892/ijmm.2015.2132
- Jakupoglu, C., Przemeck, G. K., Schneider, M., Moreno, S. G., Mayr, N.,
 Hatzopoulos, A. K., . . . Conrad, M. (2005). Cytoplasmic thioredoxin reductase
 is essential for embryogenesis but dispensable for cardiac development. *Mol Cell Biol, 25*(5), 1980-1988. doi:10.1128/MCB.25.5.1980-1988.2005
- Ji, S., Yang, R., Lu, C., Qiu, Z., Yan, C., & Zhao, Z. (2014). Differential Expression of
 PPARγ, FASN, and ACADM Genes in Various Adipose Tissues and
 Longissimus dorsi Muscle from Yanbian Yellow Cattle and Yan Yellow Cattle.
 Asian-Australas J Anim Sci, 27(1), 10-18. doi:10.5713/ajas.2013.13422
- 519 Kane, M. T., Morgan, P. M., & Coonan, C. (1997). Peptide growth factors and 520 preimplantation development. *Hum Reprod Update, 3*(2), 137-157.
- 521 Kaye, P. L., & Harvey, M. B. (1995). The role of growth factors in preimplantation 522 development. *Prog Growth Factor Res, 6*(1), 1-24.
- Körbes, A. P., Kulcheski, F. R., Margis, R., Margis-Pinheiro, M., & Turchetto-Zolet, A.
 C. (2016). Molecular evolution of the lysophosphatidic acid acyltransferase
 (LPAAT) gene family. *Mol Phylogenet Evol, 96*, 55-69.
 doi:10.1016/j.ympev.2015.12.001
- Lawrence, J. B., Oxvig, C., Overgaard, M. T., Sottrup-Jensen, L., Gleich, G. J., Hays,
 L. G., . . . Conover, C. A. (1999). The insulin-like growth factor (IGF)dependent IGF binding protein-4 protease secreted by human fibroblasts is
 pregnancy-associated plasma protein-A. *Proc Natl Acad Sci U S A, 96*(6),
 3149-3153.
- Leão, B. C., Rocha-Frigoni, N. A., Cabral, E. C., Franco, M. F., Ferreira, C. R., Eberlin, M. N., . . . Mingoti, G. Z. (2015). Membrane lipid profile monitored by mass spectrometry detected differences between fresh and vitrified in vitroproduced bovine embryos. *Zygote*, *23*(5), 732-741. doi:10.1017/S0967199414000380
- Lin, T. M., Galbert, S. P., Kiefer, D., Spellacy, W. N., & Gall, S. (1974).
 Characterization of four human pregnancy-associated plasma proteins. *Am J Obstet Gynecol, 118*(2), 223-236.
- Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data
 using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods*, 25(4), 402-408. doi:10.1006/meth.2001.1262
- Lonergan, P., Rizos, D., Gutierrez-Adan, A., Fair, T., & Boland, M. P. (2003). Oocyte and embryo quality: effect of origin, culture conditions and gene expression patterns. *Reprod Domest Anim, 38*(4), 259-267.
- Lopes, A. C., Palhão, M. P., Fernandes, C., Sudano, M. J., Castilho, A., & Caixeta, E.

- 547 S. (2017). Differential expression of insulin-like growth factor family members 548 in immature cumulus-oocyte complexes from dairy cows with different 549 genotypes. *Reprod Domest Anim,* 52(6), 1067-1073. doi:10.1111/rda.13028
- Luciano, A. M., Modina, S., Gandolfi, F., Lauria, A., & Armstrong, D. T. (2000). Effect of cell-to-cell contact on in vitro deoxyribonucleic acid synthesis and apoptosis responses of bovine granulosa cells to insulin-like growth factor-I and epidermal growth factor. *Biol Reprod, 63*(6), 1580-1585.
- Machado, G. M., Caixeta, E. S., Lucci, C. M., Rumpf, R., Franco, M. M., & Dode, M.
 A. (2012). Post-hatching development of bovine embryos in vitro: the effects of tunnel preparation and gender. *Zygote, 20*(2), 123-134.
 doi:10.1017/S0967199411000086
- 558 Matsui, M., Takahashi, Y., Hishinuma, M., & Kanagawa, H. (1995). Insulin and 559 insulin-like growth factor-I (IGF-I) stimulate the development of bovine 560 embryos fertilized in vitro. *J Vet Med Sci*, *57*(6), 1109-1111.
- Mazerbourg, S., Bondy, C. A., Zhou, J., & Monget, P. (2003). The insulin-like growth
 factor system: a key determinant role in the growth and selection of ovarian
 follicles? a comparative species study. *Reprod Domest Anim, 38*(4), 247-258.
- Mazerbourg, S., & Monget, P. (2018). Insulin-Like Growth Factor Binding Proteins
 and IGFBP Proteases: A Dynamic System Regulating the Ovarian
 Folliculogenesis. Front Endocrinol (Lausanne), 9, 134.
 doi:10.3389/fendo.2018.00134
- Meiyu, Q., Liu, D., & Roth, Z. (2015). IGF-I slightly improves nuclear maturation and
 cleavage rate of bovine oocytes exposed to acute heat shock in vitro. *Zygote,* 23(4), 514-524. doi:10.1017/S096719941400015X
- Meneghel, M., Dall'Acqua, P. C., Ambrogi, M., Leão, B. C. S., Rocha-Frigoni, N. A.
 S., & Mingoti, G. Z. (2017). Lipid content and cryotolerance of *in vitro*produced bovine embryos treated with forskolin before vitrification. In (Vol. 37,
 pp. 395-400). Rio de Janeiro: Pesquisa Veterinária Brasileira.
- 575 Mtango, N. R., Harvey, A. J., Latham, K. E., & Brenner, C. A. (2008). Molecular 576 control of mitochondrial function in developing rhesus monkey oocytes and 577 preimplantation-stage embryos. *Reprod Fertil Dev, 20*(7), 846-859.
- 578 Nagyova, E. (2012). Regulation of cumulus expansion and hyaluronan synthesis in
 579 porcine oocyte-cumulus complexes during in vitro maturation. *Endocr Regul,* 580 46(4), 225-235.
- Nivet, A. L., Vigneault, C., Blondin, P., & Sirard, M. A. (2013). Changes in granulosa
 cells' gene expression associated with increased oocyte competence in
 bovine. *Reproduction, 145*(6), 555-565. doi:10.1530/REP-13-0032
- Nyegaard, M., Overgaard, M. T., Su, Y. Q., Hamilton, A. E., Kwintkiewicz, J., Hsieh,
 M., . . . Giudice, L. C. (2010). Lack of functional pregnancy-associated plasma
 protein-A (PAPPA) compromises mouse ovarian steroidogenesis and female
 fertility. *Biol Reprod, 82*(6), 1129-1138. doi:10.1095/biolreprod.109.079517
- Palma, G. A., Müller, M., & Brem, G. (1997). Effect of insulin-like growth factor I (IGFI) at high concentrations on blastocyst development of bovine embryos
 produced in vitro. *J Reprod Fertil*, *110*(2), 347-353.
- Petry, C. J., Ong, K. K., Hughes, I. A., Acerini, C. L., Frystyk, J., & Dunger, D. B.
 (2017). Early Pregnancy-Associated Plasma Protein A Concentrations Are
 Associated With Third Trimester Insulin Sensitivity. *J Clin Endocrinol Metab*,
 102(6), 2000-2008. doi:10.1210/jc.2017-00272
- Raile, K., Hille, R., Laue, S., Schulz, A., Pfeifer, G., Horn, F., & Kiess, W. (2003).
 Insulin-like growth factor I (IGF-I) stimulates proliferation but also increases

- 597caspase-3 activity, Annexin-V binding, and DNA-fragmentation in human598MG63 osteosarcoma cells: co-activation of pro- and anti-apoptotic pathways599by IGF-I. Horm Metab Res, 35(11-12), 786-793. doi:10.1055/s-2004-814140
- Rantanen, A., Jansson, M., Oldfors, A., & Larsson, N. G. (2001). Downregulation of
 Tfam and mtDNA copy number during mammalian spermatogenesis. *Mamm Genome, 12*(10), 787-792.
- Rivera, G. M., & Fortune, J. E. (2003). Proteolysis of insulin-like growth factor binding
 proteins -4 and -5 in bovine follicular fluid: implications for ovarian follicular
 selection and dominance. *Endocrinology*, 144(7), 2977-2987.
 doi:10.1210/en.2002-0077
- Ruan, W., & Lai, M. (2010). Insulin-like growth factor binding protein: a possible
 marker for the metabolic syndrome? *Acta Diabetol, 47*(1), 5-14.
 doi:10.1007/s00592-009-0142-3
- Sakaguchi, M., Dominko, T., Yamauchi, N., Leibfried-Rutledge, M. L., Nagai, T., &
 First, N. L. (2002). Possible mechanism for acceleration of meiotic progression
 of bovine follicular oocytes by growth factors in vitro. *Reproduction, 123*(1),
 135-142.
- Satrapa, R. A., Castilho, A. S., Razza, E. M., Pegorer, M. F., Puelker, R., & Barros,
 C. M. (2013). Differential expression of members of the IGF system in OPUderived oocytes from Nelore (Bos indicus) and Holstein (Bos taurus) cows. *Anim Reprod Sci, 138*(3-4), 155-158. doi:10.1016/j.anireprosci.2013.02.023
- Satrapa, R. A., Razza, E. M., Castilho, A. C., Simões, R. A., Silva, C. F., Nabhan, T.,
 Barros, C. M. (2013). Differential expression of IGF family members in
 heat-stressed embryos produced in vitro from OPU-derived oocytes of Nelore
 (Bos indicus) and Holstein (Bos taurus) cows. *Reprod Domest Anim, 48*(6),
 1043-1048. doi:10.1111/rda.12211
- Sawai, K., Kageyama, S., Moriyasu, S., Hirayama, H., Minamihashi, A., & Onoe, S.
 (2005). Analysis of mRNA transcripts for insulin-like growth factor receptors and binding proteins in bovine embryos derived from somatic cell nuclear transfer. *Cloning Stem Cells, 7*(3), 189-198. doi:10.1089/clo.2005.7.189
- 627 Shoubridge, E. A., & Wai, T. (2007). Mitochondrial DNA and the mammalian oocyte.
 628 *Curr Top Dev Biol, 77*, 87-111. doi:10.1016/S0070-2153(06)77004-1
- 629 Silva, J. P., & Larsson, N. G. (2002). Manipulation of mitochondrial DNA gene 630 expression in the mouse. *Biochim Biophys Acta, 1555*(1-3), 106-110.
- Sirotkin, A. V., Dukesová, J., Makarevich, A. V., Kubek, A., & Bulla, J. (2000).
 Evidence that growth factors IGF-I, IGF-II and EGF can stimulate nuclear
 maturation of porcine oocytes via intracellular protein kinase A. *Reprod Nutr Dev, 40*(6), 559-569.
- Thompson, J. G., Lane, M., & Gilchrist, R. B. (2007). Metabolism of the bovine
 cumulus-oocyte complex and influence on subsequent developmental
 competence. Soc Reprod Fertil Suppl, 64, 179-190.
- Uysal, F., Akkoyunlu, G., & Ozturk, S. (2015). Dynamic expression of DNA
 methyltransferases (DNMTs) in oocytes and early embryos. *Biochimie, 116*, 103-113. doi:10.1016/j.biochi.2015.06.019
- Velazquez, M. A., Zaraza, J., Oropeza, A., Webb, R., & Niemann, H. (2009). The role
 of IGF1 in the in vivo production of bovine embryos from superovulated
 donors. *Reproduction*, *137*(2), 161-180. doi:10.1530/REP-08-0362
- Wang, J., Silva, J. P., Gustafsson, C. M., Rustin, P., & Larsson, N. G. (2001).
 Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. *Proc Natl Acad Sci U S A, 98*(7), 4038-4043.

- 647 doi:10.1073/pnas.061038798
- Wang, S., Kou, Z., Jing, Z., Zhang, Y., Guo, X., Dong, M., . . . Gao, S. (2010).
 Proteome of mouse oocytes at different developmental stages. *Proc Natl Acad Sci U S A, 107*(41), 17639-17644. doi:10.1073/pnas.1013185107
- Wigglesworth, K., Lee, K. B., O'Brien, M. J., Peng, J., Matzuk, M. M., & Eppig, J. J.
 (2013). Bidirectional communication between oocytes and ovarian follicular
 somatic cells is required for meiotic arrest of mammalian oocytes. *Proc Natl Acad Sci U S A, 110*(39), E3723-3729. doi:10.1073/pnas.1314829110
- Wu, L. L., Dunning, K. R., Yang, X., Russell, D. L., Lane, M., Norman, R. J., &
 Robker, R. L. (2010). High-fat diet causes lipotoxicity responses in cumulusoocyte complexes and decreased fertilization rates. *Endocrinology*, *151*(11),
 5438-5445. doi:10.1210/en.2010-0551
- Xia, P., Tekpetey, F. R., & Armstrong, D. T. (1994). Effect of IGF-I on pig oocyte
 maturation, fertilization, and early embryonic development in vitro, and on
 granulosa and cumulus cell biosynthetic activity. *Mol Reprod Dev, 38*(4), 373379. doi:10.1002/mrd.1080380404
- Ku, X., Chen, D., Zhang, Z., Wei, Z., & Cao, Y. (2015). Molecular signature in human
 cumulus cells related to embryonic developmental potential. *Reprod Sci*,
 22(2), 173-180. doi:10.1177/1933719114536471
- Yang, X., Wu, L. L., Chura, L. R., Liang, X., Lane, M., Norman, R. J., & Robker, R. L.
 (2012). Exposure to lipid-rich follicular fluid is associated with endoplasmic
 reticulum stress and impaired oocyte maturation in cumulus-oocyte *Fertil Steril, 97*(6), 1438-1443. doi:10.1016/j.fertnstert.2012.02.034
- 670 Yang, Z., Cappello, T., & Wang, L. (2015). Emerging role of microRNAs in lipid 671 metabolism. *Acta Pharm Sin B, 5*(2), 145-150. doi:10.1016/j.apsb.2015.01.002
- Yaseen, M. A., Wrenzycki, C., Herrmann, D., Carnwath, J. W., & Niemann, H. (2001).
 Changes in the relative abundance of mRNA transcripts for insulin-like growth
 factor (IGF-I and IGF-II) ligands and their receptors (IGF-IR/IGF-IIR) in
 preimplantation bovine embryos derived from different in vitro systems. *Reproduction, 122*(4), 601-610.
- Zeng, Y., Wang, C., Niu, Y., Chi, D., Xu, M., Si, L., . . . Li, J. (2017). The influence of
 delipidation on triglyceride and LIPIN1 of porcine embryos derived from
 parthenogenetic activation. *Reprod Domest Anim, 52*(5), 842-850.
 doi:10.1111/rda.12987
- Zhandi, M., Towhidi, A., Nasr-Esfahani, M. H., Eftekhari-Yazdi, P., & Zare-Shahneh,
 A. (2009). Unexpected detrimental effect of Insulin like growth factor-1 on
 bovine oocyte developmental competence under heat stress. *J Assist Reprod Genet, 26*(11-12), 605-611. doi:10.1007/s10815-009-9364-0
- 685
- 686
- 687
- 688
- 689
- 690

691 SUPPLEMENTARY MATERIAL

Table S1. Relative abundance of target genes with similar expression (p > 0.05) in oocytes. Data represent the group mean ± S.E.M. from three biological replicates. Gene expressions were generated using the averaged control group data for normalization. Housekeeping genes *GAPDH*, peptidyl isomerase A (*PPIA*), and β-actin (*ACTB*) were used for data normalization.

Gene Symbol	Control	PAPP-A	<i>P</i> -value
ACACA	1.032 ± 0.084	1.540 ± 0.354	0.124
ADCY3	1.000 ± 0.247	1.087 ± 0.461	0.793
ADCY6	0.643 ± 0.139	0.755 ± 0.407	0.689
ADCY9	1.015 ± 0.163	0.751 ± 0.122	0.093
AGPAT1	1.002 ± 0.256	0.944 ± 0.168	0.761
AGPAT9	1.021 ± 0.174	1.045 ± 0.212	0.886
AKR1B1	1.067 ± 0.269	1.038 ± 0.137	0.881
ATF4	1.154 ± 0.552	0.536 ± 0.150	0.186
ATP5L	1.044 ± 0.156	1.089 ± 0.318	0.839
BAX	0.986 ± 0.272	0.785 ± 0.020	0.329
BCL2	1.000 ± 0.188	1.768 ± 0.494	0.101
BDNF	0.985 ± 0.187	0.760 ± 0.066	0.163
BID	0.901 ± 0.320	0.994 ± 0.351	0.753
BMP15	1.066 ± 0.221	1.267 ± 0.175	0.287
CASP3	1.099 ± 0.402	1.238 ± 0.215	0.634
CASP9	0.852 ± 0.300	0.661 ± 0.215	0.426
CAT	1.072 ± 0.277	0.902 ± 0.282	0.498
<i>CD36</i>	1.000 ± 0.504	0.845 ± 0.333	0.683
CLIC3	1.000 ± 0.913	1.754 ± 1.228	0.445
CPT1B	0.401 ± 0.089	0.517 ± 0.138	0.298
CPT2	1.128 ± 0.367	1.069 ± 0.113	0.812
DDIT3	1.167 ± 0.121	1.076 ± 0.048	0.324
DGAT1	1.192 ± 0.281	1.107 ± 0.177	0.684
DICER1	0.853 ± 0.184	0.864 ± 0.154	0.945
DNMT1	0.819 ± 0.068	0.739 ± 0.036	0.172
EGFR	1.000 ± 0.219	0.761 ± 0.173	0.216
FASN	1.045 ± 0.209	0.755 ± 0.245	0.195
FDX1	0.950 ± 0.145	0.964 ± 0.194	0.924
FOXO3	0.800 ± 0.117	0.693 ± 0.147	0.381
GATM	1.000 ± 0.951	2.686 ± 1.804	0.247
GDF9	1.046 ± 0184	1.188 ± 0.292	0.523
GFPT2	0.796 ± 0.104	0.816 ± 0.119	0.843
GLRX2	1.000 ± 0.364	1.036 ± 0.395	0.913
GPX1	1.188 ± 0.105	0.980 ± 0.130	0.100
GPX4	0.887 ± 0.384	0.712 ± 0.245	0.549
GREM1	0.999 ± 0.735	0.486 ± 0.117	0.350

GUCY1B3	0.890 ± 0.951	0.568 ± 0.199	0.619
HIFOO	0.870 ± 0.991 0.972 ± 0.144	0.308 ± 0.177 1.266 ± 0.235	0.153
HII OO H2AFZ	1.000 ± 0.312	0.736 ± 0.646	0.133
H2AF2 H3F3A	0.914 ± 0.317	0.730 ± 0.040 0.740 ± 0.056	0.371
HAS2	0.914 ± 0.317 1.150 ± 0.165	0.740 ± 0.030 1.376 ± 0.125	0.442
HAS2 HDAC2	1.056 ± 0.287	1.370 ± 0.123 1.159 ± 0.118	0.130
HDAC2 HMBS	0.941 ± 0.329	1.139 ± 0.118 1.223 ± 0.202	0.010
HPRT1	0.941 ± 0.329 1.062 ± 0.118	1.225 ± 0.202 1.216 ± 0.117	0.287
HSPA1A	1.002 ± 0.118 1.002 ± 0.551	1.210 ± 0.117 0.960 ± 0.105	0.183
HSPA5	1.052 ± 0.331 1.054 ± 0.232	0.900 ± 0.103 1.105 ± 0.139	0.307
IGF1R	1.034 ± 0.232 1.178 ± 0.319	1.091 ± 0.198	0.702
IGFBP2	1.178 ± 0.317 1.134 ± 0.102	1.091 ± 0.198 1.218 ± 0.295	0.713
IMPDH1 IMPDH1	0.489 ± 0.224	0.430 ± 0.078	0.702
IMPDH2	1.046 ± 0.337	1.149 ± 0.283	0.702
KRT8	0.876 ± 0.366	0.736 ± 0.278	0.627
LIPE	0.879 ± 0.112	0.971 ± 0.332	0.686
MTIF3	1.157 ± 0.217	0.966 ± 0.013	0.267
NDUFA1	1.064 ± 0.314	1.418 ± 0.599	0.431
NLRP5	0.973 ± 0.224	1.227 ± 0.267	0.277
NOS2	0.766 ± 0.145	0.774 ± 0.182	0.952
NOS3	1.152 ± 0.488	0.940 ± 0.320	0.570
NPR1	1.000 ± 0.358	1.085 ± 0.510	0.827
NPR2	0.799 ± 0.389	0.940 ± 0.076	0.596
OOSP1	1.001 ± 0.251	1.128 ± 0.465	0.706
PDE5A	1.214 ± 0.301	0.980 ± 0.193	0.331
PFKP	0.902 ± 0.197	0.920 ± 0.226	0.923
PGK1	1.240 ± 0.468	1.135 ± 0.133	0.739
PLIN2	0.927 ± 0.121	1.008 ± 0.227	0.626
PLIN3	1.194 ± 0.127	1.292 ± 0.303	0.647
PNPLA2	0.833 ± 0.075	0.995 ± 0.138	0.170
PRDX1	0.902 ± 0.318	0.946 ± 0.188	0.851
PRDX3	0.993 ± 0.240	0.907 ± 0.192	0.651
PTGS2	1.008 ± 0.072	1.181 ± 0.132	0.137
PTX3	1.043 ± 0.788	1.028 ± 0.234	0.978
RPL15	1.043 ± 0.788	1.028 ± 0.234	0.978
RPLPO	1.013 ± 0.126	1.057 ± 0.188	0.752
RPS25	0.933 ± 0.268	1.213 ± 0.779	0.605
SDHA	1.004 ± 0.178	1.131 ± 0.173	0.427
SLC2A1	1.000 ± 0.556	0.828 ± 0.374	0.683
SOD1	1.069 ± 0.242	0.929 ± 0.041	0.424
STAT3	0.942 ± 0.323	1.003 ± 0.221	0.803
TFAM	1.000 ± 0.224	0.681 ± 0.414	0.323
TNFAIP6	1.000 ± 1.434	1.805 ± 1.609	0.553
VCAN	1.009 ± 0.221	1.332 ± 0.042	0.122
XBP1	0.984 ± 0.241	1.218 ± 0.244	0.303

Table S2. Relative abundance of target genes with similar expression (p > 0.05) in cumulus cells. Data represent the group mean ± S.E.M from three biological replicates. Gene expressions were generated using the averaged control group data for normalization. Housekeeping genes *GAPDH*, peptidyl isomerase A (*PPIA*), and β-actin (*ACTB*) were used for data normalization.

Gene Symbol	Control	PAPP-A	<i>P</i> -value
ACACA	1.118 ± 0.268	0.670 ± 0.063	0.095
ADCY3	0.791 ± 0.277	1.028 ± 0.470	0.504
ADCY6	0.940 ± 0.079	0.873 ± 0.183	0.599
ADCY9	1.041 ± 0.061	0.740 ± 0.199	0.109
AKR1B1	1.039 ± 0.112	1.074 ± 0.217	0.820
ATF4	1.162 ± 0.097	0.959 ± 0.096	0.063
ATP5L	1.030 ± 0.033	1.243 ± 0.456	0.504
BAX	1.022 ± 0.121	1.121 ± 0.176	0.471
BCL2	0.943 ± 0.226	1.219 ± 0.146	0.163
BDNF	0.837 ± 0.781	0.956 ± 0.166	0.350
BID	0.916 ± 0.133	1.390 ± 0.509	0.245
CASP9	0.943 ± 0.137	1.019 ± 0.211	0.636
CAT	0.847 ± 0.161	0.962 ± 0.226	0.520
CD36	0.870 ± 0.302	0.810 ± 0.298	0.816
CLIC3	0.707 ± 0.298	0.916 ± 0.824	0.714
CPT1B	0.685 ± 0.039	0.985 ± 0.522	0.424
CPT2	1.050 ± 0.102	0.888 ± 0.133	0.173
DDIT3	0.965 ± 0.278	1.051 ± 0.344	0.755
DGAT1	0.988 ± 0.099	0.894 ± 0.255	0.599
DICER1	0.984 ± 0.130	0.733 ± 0.148	0.093
DNMT1	0.976 ± 0.113	0.865 ± 0.193	0.448
FDX1	1.079 ± 0.172	0.942 ± 0.201	0.422
FOXO3	1.015 ± 0.102	0.680 ± 0.314	0.198
GATM	0.962 ± 0.133	0.702 ± 0.134	0.076
GFPT2	1.096 ± 0.061	0.804 ± 0.227	0.147
GLRX2	1.122 ± 0.146	1.205 ± 0.526	0.815
GPX1	1.037 ± 0.072	1.046 ± 0.069	0.890
GPX4	1.180 ± 0.145	0.944 ± 0.194	0.171
GREM1	1.138 ± 0.367	0.522 ± 0.257	0.084
GUCY1B3	1.128 ± 0.291	0.583 ± 0.070	0.068
H2AFZ	1.057 ± 0.108	1.102 ± 0.591	0.907
H3F3A	1.139 ± 0.522	1.072 ± 0.318	0.860
HMBS	1.045 ± 0.123	1.129 ± 0.180	0.544
HPRT1	1.029 ± 0.075	0.873 ± 0.113	0.128
HSPA1A	0.668 ± 0.154	1.082 ± 0.431	0.232
IISIAIA	0.000 ± 0.15 (1.002 = 01.01	0.202

IGF1R	1.003 ± 0.008	0.862 ± 0.211	0.368
IGFBP2	0.949 ± 0.384	0.880 ± 0.419	0.843
IGFBP4	1.236 ± 0.459	0.795 ± 0.220	0.235
IMPDH2	1.085 ± 0.108	1.014 ± 0.252	0.685
KRT8	0.556 ± 0.444	1.253 ± 0.439	0.129
LIPE	1.033 ± 0.602	0.685 ± 0.163	0.425
LPL	0.702 ± 0.233	1.169 ± 0.390	0.165
LUM	0.771 ± 0.136	0.976 ± 0.389	0.464
NDUFA1	0.992 ± 0.402	1.057 ± 0.330	0.841
NOS2	0.834 ± 0.406	1.100 ± 0.154	0.378
NOS3	1.104 ± 0.228	1.331 ± 0.607	0.593
NPPC	0.858 ± 0.489	0.792 ± 0.690	0.901
NPR1	1.089 ± 0.428	0.692 ± 0.147	0.245
NPR2	1.069 ± 0.389	1.013 ± 0.568	0.896
NPR3	0.972 ± 0.182	0.742 ± 0.649	0.606
OOSP1	0.741 ± 0.313	1.200 ± 0.322	0.151
PDE5A	1.150 ± 0.391	0.771 ± 0.059	0.233
PFKP	0.929 ± 0.156	1.061 ± 0.165	0.369
PGK1	1.029 ± 0.093	1.181 ± 0.272	0.441
PLIN2	1.074 ± 0.097	0.975 ± 0.040	0.215
PLIN3	1.081 ± 0.078	1.170 ± 0.259	0.622
PNPLA2	1.139 ± 0.140	0.764 ± 0.386	0.229
PRDX1	1.061 ± 0.048	0.988 ± 0.087	0.290
PRDX3	1.106 ± 0.252	0.816 ± 0.105	0.174
PTGS2	0.969 ± 0.089	0.712 ± 0.235	0.190
PTX3	0.844 ± 0.237	1.186 ± 0.5517	0.379
RPL15	0.924 ± 0.475	1.484 ± 0.363	0.184
RPLPO	1.025 ± 0.019	1.493 ± 0.605	0.312
RPS25	1.094 ± 0.120	1.481 ± 0.686	0.433
SDHA	1.101 ± 0.098	0.890 ± 0.186	0.180
SLC2A1	0.809 ± 0.155	0.960 ± 0.237	0.414
SLC2A4	0.738 ± 0.090	1.017 ± 0.264	0.200
SOD1	1.063 ± 0.146	1.035 ± 0.145	0.829
STAT3	1.001 ± 0.238	0.783 ± 0.247	0.334
TFAM	0.971 ± 0.196	0.964 ± 0.032	0.955
TNFAIP6	1.249 ± 0.509	0.686 ± 0.205	0.186
TXNRD1	0.926 ± 0.230	0.807 ± 0.273	0.596
VCAN	0.955 ± 0.088	0.806 ± 0.290	0.472
XBP1	1.086 ± 0.301	0.842 ± 0.230	0.331

44

Table S3. Relative abundance of target genes with similar expression (p > 0.05) in blastocysts. Data represent the group mean \pm S.E.M from three biological replicates. Gene expressions were generated using the averaged control group data for normalization. Housekeeping genes *GAPDH*, peptidyl isomerase A (*PPIA*), β -actin (*ACTB*), and Succinate Dehydrogenase Complex Flavoprotein Subunit A (*SDHA*), were used for data normalization.

Gene Symbol	Control	PAPP-A	<i>P</i> -value
ACACA	0.991 ± 0.251	0.957 ± 0.223	0.871
ACSL3	1.041 ± 0.174	1.426 ± 0.245	0.098
ACSL6	0.938 ± 0.233	1.538 ± 0.775	0.311
AKR1B1	0.913 ± 0.516	0.663 ± 0.496	0.577
AQP3	0.964 ± 0.171	1.287 ± 0.700	0.512
BAX	0.895 ± 0.272	1.053 ± 0.161	0.447
BMP15	1.193 ± 1.075	0.326 ± 0.394	0.296
CAT	0.953 ± 0.403	1.116 ± 0.203	0.576
CDH1	1.003 ± 0.059	1.647 ± 0.453	0.131
CDK6	1.044 ± 0.514	1.564 ± 1.095	0.514
CDX2	0.957 ± 0.237	0.983 ± 0.024	0.866
<i>CYP19</i>	1.228 ± 0.660	1.955 ± 0.840	0.307
DDIT3	0.950 ± 0.158	2.257 ± 1.484	0.266
DNMT1	0.939 ± 0.170	1.192 ± 0.334	0.328
DNMT3B	1.101 ± 0.244	0.933 ± 0.162	0.383
DSC2	0.929 ± 0.223	0.549 ± 0.112	0.079
EGFR	1.033 ± 0.379	0.669 ± 0.010	0.238
ELOVL6	1.058 ± 0.025	1.032 ± 0.283	0.890
FADS2	0.955 ± 0.520	0.578 ± 0.342	0.362
FASN	0.976 ± 0.011	0.742 ± 0.135	0.095
FSHR	1.058 ± 0.654	1.154 ± 1.078	0.902
G5K3A	1.052 ± 0.063	0.933 ± 0.108	0.189
G6PD	1.028 ± 0.025	0.986 ± 0.199	0.749
GDF9	1.087 ± 1.290	0.359 ± 0.400	0.436
GPX1	1.011 ± 0.370	1.371 ± 0.220	0.236
GPX4	0.936 ± 0.235	0.649 ± 0.205	0.188
H19	0.807 ± 0.985	1.038 ± 1.094	0.799
H1F1A	0.923 ± 0.606	0.407 ± 0.114	0.277
HAND1	1.166 ± 0.874	0.843 ± 0.362	0.601
HMOX1	1.182 ± 0.295	1.695 ± 0.597	0.276
HP1	1.025 ± 0.203	1.095 ± 0.221	0.707
HSF1	0.990 ± 0.409	0.624 ± 0.201	0.261
HSP90AA1	1.002 ± 0.337	1.554 ± 0.674	0.295
HSPA1A	0.976 ± 0.197	0.619 ± 0.660	0.452
HSPA5	0.901 ± 0.175	1.052 ± 0.127	0.297
HSPD1	1.010 ± 0.244	1.322 ± 0.291	0.231

IFNT2	0.655 ± 0.384	0.363 ± 0.177	0.323
IGF1R	1.020 ± 0.602	1.155 ± 0.172	0.741
IGFBP2	0.993 ± 0.189	1.055 ± 0.047	0.633
IGFBP4	1.024 ± 0.326	1.409 ± 0.181	0.168
KEAP1	0.996 ± 0.293	1.325 ± 0.523	0.409
LIFR	0.540 ± 0.301	0.746 ± 0.939	0.747
LPL	1.000 ± 1.069	1.343 ± 1.192	0.729
LUM	1.124 ± 1.864	0.025 ± 0.029	0.415
MAPK1	1.021 ± 0.237	1.391 ± 0.042	0.110
MORF4L2	1.016 ± 0.484	0.948 ± 0.420	0.863
MTIF3	0.800 ± 0.182	1.454 ± 0.672	0.230
NANOG	1.156 ± 0.549	1.057 ± 0.461	0.823
NFE2L2	0.995 ± 0.217	1.139 ± 0.543	0.702
NFKB2	0.932 ± 0.317	0.998 ± 0.033	0.756
NLPR5	1.000 ± 0.643	0.651 ± 0.656	0.547
NRP2	0.920 ± 0.566	1.327 ± 0.908	0.552
OCLN	1.022 ± 0.158	0.862 ± 0.231	0.385
OTX2	1.112 ± 0.228	1.277 ± 0.234	0.430
PAF1	0.992 ± 0.091	1.640 ± 0.769	0.281
PFKP	0.941 ± 0.742	0.144 ± 0.145	0.200
PGK1	1.000 ± 0.372	1.043 ± 0.710	0.932
РКР2	1.042 ± 0.201	1.477 ± 0.412	0.202
POU5F1	0.979 ± 0.230	1.651 ± 0.697	0.232
PRDX1	1.056 ± 0.320	1.045 ± 0.348	0.969
REST	1.107 ± 0.448	0.898 ± 0.197	0.517
SCD	1.052 ± 0.232	1.247 ± 0.912	0.751
SLC2A1	1.052 ± 0.093	1.308 ± 0.161	0.091
SLC2A3	0.913 ± 0.255	1.275 ± 0.525	0.364
SLC2A5	1.008 ± 0.274	0.783 ± 0226	0.338
SOD1	1.028 ± 0.238	0.857 ± 0.353	0.529
SOD2	1.075 ± 0.681	0.648 ± 0.503	0.435
SOX2	1.067 ± 0.089	0.841 ± 0.256	0.263
SREBF1	1.185 ± 0.657	0.247 ± 0.055	0.131
STAT3	1.121 ± 0.167	1.392 ± 0.333	0.298
VEGFA	0.927 ± 0.486	1.356 ± 0.750	0.459
XBP1	0.981 ± 0.359	1.655 ± 0.594	0.183

Gene Symbol	Assys ID [†]	Gene Name
ACACA	Bt03213389_m1	Acetyl CoA Carboxylase
ACTB	Bt03279174_g1	Actin, Beta (Housekeeping)
ADCY3	Bt04289077_m1	Adenylate Cyclase 3
ADCY6	Bt03816767_m1	Adenylate Cyclase 6
ADCY9	Bt04287024_m1	Adenylate Cyclase 9
AGPAT1	Bt03224587_g1	1-Acylglycerol-3-Phosphate O-Acyltransferase 1
AGPAT9	Bt04292093_m1	1-Acylglycerol-3-Phosphate O-Acyltransferase 9
AKR1B1	Bt03218049_g1	Aldo-Keto Reductase Family 1, Member B1
ATF4	Bt03221057_m1	Activating Transcription Factor 4
ATP5L	Bt03210836_g1	ATP synthase, H+ transporting, mitochondrial Fo complex subunit
BAX	Bt03211777_g1	BCL2-Associated X Protein
BCL2	Bt04298952_m1	B-cell CLL/Lymphoma 2
BDNF	Bt03287437_s1	Brain-Derived Neurotrophic Factor
BID	Bt03241255_m1	BH3 Interacting Domain Death Agonist
BMP15	Bt03286494_u1	Bone Morphogenetic Protein 15
CASP3	Bt03250954_g1	Caspase 3, Apoptosis-Related Cysteine Peptidase
CASP9	Bt04282453_m1	Caspase 9, Apoptosis-Related Cysteine Peptidase
CAT	Bt03228713_m1	Catalase
CD36	Bt03212335_mH	CD36 molecule (thrombospondin receptor)
CLIC3	Bt03263038_m1	Chloride Intracellular Channel 3
CPT1B	Bt03244645_m1	Carnitine Palmitoyltransferase 1B
CPT2	Bt03233823_m1	Carnitine Palmitoyltransferase 2
DDIT3	Bt03251320_g1	DNA-Damage-Inducible Transcript 3
DGAT1	Bt03251719_g1	Diacylglycerol O-Acyltransferase 1
DICER1	Bt03217754_m1	Dicer 1, Ribonuclease III
DNMT1	Bt03224737_m1	DNA (Cytosine-5-)-Methyltransferase 1
EGFR	AJT96D7	Epidermal Growth Factor - Receptor
FASN	Bt03210485_m1	Fatty Acid Synthase
FDX1		Ferrodoxin 1
FOXO3		Forkhead Box O3
GAPDH		Glyceraldehyde-3-Phosphate Dehydrogenase (Housekeeping)
GATM	Bt03237896_m1	Glycine Amidinotransferase
GDF9		Growth Differentiation Factor 9
GFPT2		Glutamine-Fructose-6-Phosphate Transaminase 2
GLRX2	Bt03229700_m1	Glutaredoxin 2
GPX1		Glutathione Peroxidase 1
GPX4	 Bt03259611_m1	Glutathione peroxidase 4
GREM1		Gremlin 1
GUCY1B3	Bt03215602_m1	Guanylate Cyclase 1, Soluble, Beta 3
HIFOO	Bt03228652_g1	H1 Histone Family, Member O, Oocyte-Specific
H1700 H2AFZ	Bt03216346_g1	H2A Histone Family, Member Z
H3F3A	Bt03278804_g1	H3 Histone, Family 3ª
1151 5/1	Bt03212695_g1	Hyaluronan Synthase 2

Table S4. Housekeeping and target genes analyzed in oocytes samples by RT-qPCR.

HDAC2	Bt03244871_m1	Histone Deacetylase 2
HMBS	Bt03234763_m1	Hydroxymethylbilane Synthase
HPRT1	Bt03225311_g1	Hypoxanthine Phosphoribosyltransferase 1
HSPA1A	Bt03292670_g1	Heat Shock 70kDa Protein 1A
HSPA5	Bt03244880_m1	Glucose-Regulated Protein, 78kDa
IGF1R	Bt03649217_m1	Insulin-Like Growth Factor 1 Receptor
IGFBP2	Bt01040719_m1	Insulin-Like Growth Factor Binding Protein 2
IMPDH1	Bt00995384_m1	IMP (inosine 5'-monophosphate) Dehydrogenase 1
IMPDH2	Bt03226238_g1	IMP (inosine 5'-monophosphate) Dehydrogenase 2
KRT8	Bt03225178_g1	Keratin 8
LIPE	Bt03253691_m1	Lipase, Hormone-Sensitive (HSL)
MTIF3	Bt03231844_m1	Mitochondrial Translational Initiation Factor 3
NDUFA1	Bt03216720_g1	NADH: Ubiquinone Oxidoreductase Subunit A1
NLRP5	Bt03218031_m1	NLR Family, Pyrin Domain Containing 5
NOS2	Bt03249597_m1	Nitric Oxide Synthase 2, Inducible
NOS3	Bt03217679_m1	Nitric Oxide Synthase 3
NPR1	Bt04297034_g1	Natriuretic Peptide Receptor 1
NPR2	Bt04316732_m1	Natriuretic Peptide Receptor 2
OOSP1	Bt03233533_g1	Oocyte-Secreted Protein 1
PDE5A	Bt03214261_m1	Phosphodiesterase 5A, cGMP-Specific
PFKP	Bt04316551_m1	Phosphofructokinase
PGK1	Bt03225854_mH	Phosphoglycerate Kinase 1
PLIN2	Bt03212182_m1	Perilipin 2
PLIN3	Bt03230537_m1	Perilipin 3
PNPLA2	Bt03234129_g1	Patatin-Like Phospholipase Domain Containing 2
PPIA	Bt03224617_g1	Peptidylprolyl Isomerase A (Housekeeping)
PRDX1	Bt03223684_m1	Peroxiredoxin-1
PRDX3	Bt03214402_m1	peroxiredoxin 3
PTGS2	Bt03214489_m1	Prostaglandin-Endoperoxide Synthase 2
РТХЗ	Bt03249011_m1	Pentraxin 3, Long
RPL15	Bt03288449_g1	Ribosomal Protein L15
RPLPO	Bt03218086_m1	Ribosomal Protein, Large, PO
RPS25	Bt03220440_g1	Ribosomal Protein S25
SDHA	Bt04307509_m1	Succinate Dehydrogenase Complex Flavoprotein Subunit A
SLC2A1	Bt03215314_m1	Solute carrier family 2 (facilitated glucose transporter), member 1
SOD1	Bt03215423_g1	Superoxide dismutase 1, soluble
STAT3	Bt03259871_g1	Signal Transducer and Activator of Transcription 3
TFAM	Bt03260078_m1	Transcription Factor A, Mitochondrial
TNFAIP6	Bt03210223_m1	Tumor necrosis factor, alpha-induced protein 6
TXNRD1	Bt03215471_m1	Thioredoxin reductase 1
VCAN	Bt03217633_m1	Versican
XBP1	Bt03227621_g1	X-Box Binding Protein 1
Thomas Dichor	Coiontifio (Wilmi	noton DE LICA)

717 † Thermo Fisher Scientific (Wilmington, DE, USA)

Gene Symbol	Assys ID [†]	Gene Name
ACACA	Bt03213389_m1	Acetyl CoA Carboxylase
ACTB	Bt03279174_g1	Actin, Beta (Housekeeping)
ADCY3	Bt04289077_m1	Adenylate Cyclase 3
ADCY6	Bt03816767_m1	Adenylate Cyclase 6
ADCY9	Bt04287024_m1	Adenylate Cyclase 9
AGPAT1	Bt03224587_g1	1-Acylglycerol-3-Phosphate O-Acyltransferase 1
AGPAT9	Bt04292093_m1	1-Acylglycerol-3-Phosphate O-Acyltransferase 9
AKR1B1	Bt03218049_g1	Aldo-Keto Reductase Family 1, Member B1
ATF4	Bt03221057_m1	Activating Transcription Factor 4
ATP5L	Bt03210836_g1	ATP Synthase, H+ Transporting, Mitochondrial Fo Complex Subunit
BAX	Bt03211777_g1	BCL2-Associated X Protein
BCL2	Bt04298952_m1	B-cell CLL/Lymphoma 2
BDNF	Bt03287437_s1	Brain-Derived Neurotrophic Factor
BID	Bt03241255_m1	BH3 Interacting Domain Death Agonist
CASP3	Bt03250954_g1	Caspase 3, Apoptosis-Related Cysteine Peptidase
CASP9	Bt04282453_m1	Caspase 9, Apoptosis-Related Cysteine Peptidase
CAT		Catalase
CD36	 Bt03212335_mH	CD36 molecule (thrombospondin receptor)
CLIC3	Bt03263038_m1	Chloride Intracellular Channel 3
CPT1B	Bt03244645_m1	Carnitine Palmitoyltransferase 1B
CPT2	Bt03233823_m1	Carnitine Palmitoyltransferase 2
DDIT3	Bt03251320_g1	DNA-Damage-Inducible Transcript 3
DGAT1	Bt03251719_g1	Diacylglycerol O-Acyltransferase 1
DICER1	Bt03217754_m1	Dicer 1, Ribonuclease III
DICLICI DNMT1	Bt03224737_m1	DNA (Cytosine-5-)-Methyltransferase 1
EGFR	AJT96D7	Epidermal Growth Factor - Receptor
FASN	Bt03210485 m1	Fatty Acid Synthase
FDX1	Bt03217449_m1	Ferrodoxin 1
FOXO3	Bt03649334_s1	Forkhead Box O3
GAPDH	Bt03049534_s1 Bt03210912_g1	Glyceraldehyde-3-Phosphate Dehydrogenase (Housekeeping)
GATM	Bt03237896_m1	Glycine Amidinotransferase
GATM GFPT2	Bt03250351_m1	Glutamine-Fructose-6-Phosphate Transaminase 2
GFF12 GLRX2	Bt03229700_m1	Glutaredoxin 2
GLKX2 GPX1		Glutathione Peroxidase 1
	Bt03259217_g1	Glutathione Peroxidase 4
GPX4	Bt03259611_m1	
GREM1	Bt03255355_m1	Gremlin 1
GUCY1B3	Bt03215602_m1	Guanylate Cyclase 1, Soluble, Beta 3
H2AFZ	Bt03216346_g1	H2A Histone Family, Member Z
H3F3A	Bt03278804_g1	H3 Histone, Family 3 ^a
HAS2	Bt03212695_g1	Hyaluronan Synthase 2
HDAC2	Bt03244871_m1	Histone Deacetylase 2
HMBS	Bt03234763_m1	Hydroxymethylbilane Synthase
HPRT1	Bt03225311_g1	Hypoxanthine Phosphoribosyl Transferase 1

Table S5. Housekeeping and target genes analyzed in cumulus cells samples by RT-qPCR.

TICDATA	D.02202.70 1	
HSPA1A	Bt03292670_g1	Heat Shock 70kDa Protein 1A
HSPA5	Bt03244880_m1	Glucose-Regulated Protein, 78kDa
IGF1R	Bt03649217_m1	Insulin-Like Growth Factor 1 Receptor
IGFBP2	Bt01040719_m1	Insulin-Like Growth Factor Binding Protein 2
IGFBP4	Bt03259500_m1	Insulin-Like Growth Factor Binding Protein 4
IMPDH1	Bt00995384_m1	IMP (inosine 5'-monophosphate) Dehydrogenase 1
IMPDH2	Bt03226238_g1	IMP (inosine 5'-monophosphate) Dehydrogenase 2
KRT8	Bt03225178_g1	Keratin 8
LIPE	Bt03253691_m1	Lipase, Hormone-Sensitive (HSL)
LPL	Bt03240493_m1	Lipoprotein Lipase
LUM	Bt03211920_m1	Lumican
MTIF3	Bt03231844_m1	Mitochondrial Translational Initiation Factor 3
NDUFA1	Bt03216720_g1	NADH: Ubiquinone Oxidoreductase Subunit A1
NOS2	Bt03249597_m1	Nitric Oxide Synthase 2, Inducible
NOS3	Bt03217679_m1	Nitric Oxide Synthase 3
NPPC	Bt03212844_m1	Natriuretic Peptide C (CNP)
NPR1	Bt04297034_g1	Natriuretic Peptide Receptor 1
NPR2	Bt04316732_m1	Natriuretic Peptide Receptor 2
NPR3	Bt03212867_m1	Natriuretic Peptide Receptor 3
OOSP1	Bt03233533_g1	Oocyte-Secreted Protein 1
PDE5A	Bt03214261_m1	Phosphodiesterase 5A, cGMP-Specific
PFKP	Bt04316551_m1	Phosphofructokinase
PGK1	Bt03225854_mH	Phosphoglycerate Kinase 1
PLIN2	Bt03212182_m1	Perilipin 2
PLIN3	Bt03230537_m1	Perilipin 3
PNPLA2	Bt03234129_g1	Patatin-Like Phospholipase Domain Containing 2
PPIA	Bt03224617_g1	Peptidylprolyl Isomerase A (Housekeeping)
PRDX1	Bt03223684_m1	Peroxiredoxin-1
PRDX3	Bt03214402_m1	Peroxiredoxin 3
PTGS2	Bt03214489_m1	Prostaglandin-Endoperoxide Synthase 2
PTX3	Bt03249011_m1	Pentraxin 3, Long
RPL15	Bt03288449_g1	Ribosomal Protein L15
RPLP0	Bt03218086_m1	Ribosomal Rrotein, Large, PO
RPS25	Bt03220440_g1	Ribosomal Protein S25
SDHA	Bt04307509_m1	Succinate Dehydrogenase Complex Flavoprotein Subunit A
SLC2A1	Bt03215314_m1	Solute Carrier Family 2 (facilitated glucose transporter), Member 1
SLC2A4	Bt03215316_m1	Solute Carrier Family 2 (facilitated glucose transporter), Member 4
SOD1	Bt03215423_g1	Superoxide Dismutase 1, Soluble
STAT3	Bt03259871_g1	Signal Transducer and Activator of Transcription 3
TFAM	Bt03260078_m1	Transcription Factor A, Mitochondrial
TNFAIP6	Bt03210223_m1	Tumor Necrosis Factor, Alpha-Induced Protein 6
TXNRD1	Bt03215471_m1	Thioredoxin Reductase 1
VCAN	Bt03217633_m1	Versican
VNN1	Bt03220248_m1	Vanin 1
XBP1	Bt03227621_g1	X-Box Binding Protein 1
T1	or Scientific (Wilm	

721 † Thermo Fisher Scientific (Wilmington, DE, USA)

Gene Symbol	Assys \mathbf{ID}^{\dagger}	Gene Name
ACACA	Bt03213389_m1	Acetyl CoA Carboxylase
ACSL3	Bt04282138_m1	Acyl-CoA Synthetase 3
ACSL6	Bt03231692_m1	Acyl-CoA Synthetase 6
ACTB	Bt03279174_g1	Actin, Beta (Housekeeping)
AKR1B1	Bt03218049_g1	Aldo-Keto Reductase Family 1, Member B1
AQP3	Bt03253663_m1	Aquaporin 3
ATF4	Bt03221057_m1	Activating Transcription Factor 4
BAX	Bt03211777_g1	BCL2-Associated X Protein
BMP15	Bt03286494_u1	Bone Morphogenetic Protein 15
CASP3	Bt03250954_g1	Caspase 3, Apoptosis-Related Cysteine Peptidase
CASP9	Bt04282453_m1	Caspase 9, Apoptosis-Related Cysteine Peptidase
CAT	Bt03228713_m1	Catalase
CDH1	Bt03210093_g1	Cadherin 1
CDK6	Bt04311264_m1	Cyclin-Dependent Kinase 6
CDX2	Bt03649157_m1	Homeobox Protein CDX-2
CPT2	Bt03233823_m1	Carnitine Palmitoyltransferase 2
CYP19A1	Bt03213774_m1	Cytochrome P450 Family 19 Subfamily A Member 1
DDIT3	Bt03251320_g1	DNA-Damage-Inducible Transcript 3
DNMT1	Bt03224737_m1	DNA (Cytosine-5-)-Methyltransferase 1
DNMT3A	Bt01027164_m1	DNA (Cytosine-5-)-Methyltransferase 3A
DNMT3B	Bt03259810_m1	DNA (Cytosine-5-)-Methyltransferase 3B
DSC2	Bt03649202_m1	Desmocollin-II
EGFR	AJT96D7	Epidermal Growth Factor - Receptor
ELOVL6	Bt00907566_m1	ELOVL Fatty Acid Elongase 6
FADS2	Bt03256255_g1	Fatty Acid Desaturase 2
FASN	Bt03210485_m1	Fatty Acid Synthase
FSHR	Bt03212674_m1	Follicle-Stimulating Hormone Receptor
GSK3A	Bt03273695_m1	Glycogen Synthase Kinase 3 Alpha
G6PD	Bt03649181_m1	Glucose 6 Phosphate Desidrogenase
GAPDH	Bt03210912_g1	Glyceraldehyde-3-Phosphate Dehydrogenase (Housekeeping)
GDF9	Bt03223996_m1	Growth Differentiation Factor 9
GPX1	Bt03259217_g1	Glutathione Peroxidase 1
GPX4	Bt03259611_m1	Glutathione Peroxidase 4
H19	Custom TaqMan	Imprinted Maternally Expressed Transcript
HIF1A	Bt03259341_m1	Hypoxia Inducible Factor 1 (transcription factor)
HAND1	Bt04318733_g1	Heart and Neural Crest Cell Derivative 1
HMOX1	Bt03218632_m1	Heme Oxygenase (decycling) 1
HP1	Bt03246076_m1	Heterochromatin Protein 1
HSF1	Bt03249686_m1	Heat Shock Transcription Factor 1
HSP90AA1	Bt03218068_g1	Heat Shock Protein 90kDa Alpha
	Bt03292670_g1	Heat Shock 70kDa Protein 1A

Table S6. Housekeeping and target genes analyzed in blastocysts samples by RT-qPCR.

HSPD1B04301470.g1Heat Shock 60KDa Protein 1AHFTM3B03202973.g1Interferon Induced Transmembrane Protein 3IFNT2B03210589.g1Interferon Induced Transmembrane Protein 3IFNT2B03210589.g1Interferon Induced Transmembrane Protein 3IFNT2B03210589.g1Interferon Induced Transmembrane Protein 3IFNT2B03210589.g1Insulin-Like Growth Factor I ReceptorIGFBPB003259500.m1Insulin-Like Growth Factor Binding Protein 4KEAP1B03817661.m1Kelch-Like ECH-Associated Protein 1KRT8B03221878.g1Keratin 8LIFRB04310863.m1Leukaemia Inhibitory Factor ReceptorILLB03240493.m1Lipoprotein LipaseLUMB03211920.m1LumicanMAPK1B03220954.m1Moteality Factor 4 Like 2MTIF3B03220541.m1Nuclear Factor (crythroid-derived 2)-Like 2NANOGB03220541.m1Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in B-Cells 2NLPR5B03218031.m1NLR Family, Pyrin Domain Containing 5NRP2B04316301.g1Orthodenticle Homeobox 2PAF1B03223842.g1PlakophilinPOCLNB03223842.g1PlakophilinPKP2B03223844.g1Ploxpholpycerate Kinase 1PKP3B03223844.g1Ploxpholpycorate Kinase 1PKP4B03223844.g1Ploxpholpycorate Kinase 1PKP5B03223844.g1Ploxpholpycorate Kinase 1PK7B0430737.g1Solute Carrier Family 2 (facilitated glucose transporter), Member 5SOD1<	HSPA5	Bt03244880_m1	Glucose-Regulated Protein, 78kDa
ITTUMBt03292973_91Interferon Induced Transmembrane Protein 3IFNT2Bt03210589_91Interferon Tau-2IGF1RBt030649217_m1Insulin-Like Growth Factor 1 ReceptorIGFBP4Bt03259500_m1Insulin-Like Growth Factor Binding Protein 2IGFBP4Bt03259500_m1Insulin-Like Growth Factor Binding Protein 4KEAP1Bt0325178_91Kratin 8IHFRBt0321661_m1Kelch-Like ECH-Associated Protein 1KRT8Bt03225178_91Leukaemia Inhibitory Factor ReceptorILLBt03210906_m1Mortality Factor 4 Like 2MORF41.2Bt03210906_m1Mortality Factor 4 Like 2MORF41.2Bt03220996_m1Mortality Factor 4 Like 2MORF41.2Bt03220996_m1Nuclear Factor of Carphic Intrinsational Initiation Factor 3NANOGBt03220541_m1Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in B-Cells 2NFE21.2Bt032172789_91Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in B-Cells 2NFKB2Bt0321801_m1NLR Family, Pyrin Domain Containing 5NRP2Bt04316301_g1Orthodenticle Homeobox 2PAF1Bt03225851_m1PhosphofructokinasePCKIBt03225854_m1PhosphofructokinasePKP2Bt03225854_m1PhosphofructokinasePKP3Bt03225854_m1Peroxinedoxin-1PKFS7Bt03225854_m1PhosphofructokinasePK14Bt03225854_m1PhosphofructokinasePK75Bt03278318_s1RE1-Silencing Transcription FactorSCDBt0431650_m1Succinate Dehydr			
IFWT2Bt03210589_g1Interferon Tau-2IGF1RBt03649217_m1Insulin-Like Growth Factor I ReceptorIGFBP2Bt01040719_m1Insulin-Like Growth Factor Binding Protein 2IGFBP4Bt03259500_m1Insulin-Like Growth Factor Binding Protein 4KEAP1Bt0325178_g1Keratin 8IJFRBt04310863_m1Leukamia Inhibitory Factor ReceptorILPBt03225178_g1Keratin 8IJFRBt04310863_m1Leukamia Inhibitory Factor ReceptorILPBt03211920_m1LumicanMAPK1Bt03216718_g1Mitogen-Activated Protein KinaseMORF412Bt0327096_m1Mortality Factor 4 Like 2MORF412Bt0322541_m1Nanog HomeoboxNFE212Bt0322541_m1Naclear Factor (erythroid-derived 2)-Like 2NFKB2Bt0322789_g1Nuclear Factor (erythroid-derived 2)-Like 2NFKB2Bt032218031_m1NLR Family, Pyrin Domain Containing 5NRP2Bt04316732_m1OccludinOTX2Bt04316301_g1Orthodenticle Homeobox 2PAF1Bt0323971_g1RNA Polymerase II Associated FactorPFKPBt0431651_m1PhosphofructokinasePGKIBt0322846_g1POU Class 5 homeobox 1 (OCT4)PF1ABt03221813_m1Succinate Dehydrogenase 4 (Housekeeping)PRD15F1Bt0322846_g1POU Class 5 homeobox 1 (OCT4)PF1ABt0322617_g1Seuroyl-CoA DesaturaseSDHABt0430750_m1Succinate Dehydrogenase Complex Flavoprotein Subunit A (Housekeeping)SOL243Bt03278318_s1SUet Ca		•	
IGFLRB03649217_mlInsulin-Like Growth Factor 1 ReceptorIGFBP2B01040719_mlInsulin-Like Growth Factor Binding Protein 2IGFBP4B03259500_mlInsulin-Like Growth Factor Binding Protein 4KEAP1B03259201Insulin-Like Growth Factor Binding Protein 4KEAP1B032592178_g1Keratin 8ILFRB03211920_mlLeukaemia Inhibitory Factor ReceptorLPLB03210718_g1Mitogen-Activated Protein KinaseMORF4L2B0322016718_g1Mitogen-Activated Protein KinaseMORF4L2B03220541_mlMortality Factor 4 Like 2MTIF3B03220541_mlNuclear Factor (crythroid-derived 2)-Like 2NFEB2B03272789_g1Nuclear Factor (crythroid-derived 2)-Like 2NFEB2B03272789_g1Nuclear Factor (crythroid-derived 2)-Like 2NLPR5B03218031_mlNLR Family, Pyrin Domain Containing 5NRP2B04316301_g1Orthodenticle Homeobox 2OCLNB032255219_mlOccludinOTX2B0431651_mlPhosphofructokinasePGK1B10322364_g1POU Class 5 homeobox 1 (OCT4)PFK2B03278318_s1RE1-Silencing Transcription FactorSCDB104307509_mlSuccinate Dehydrogenase Complex Flavoprotein Subunit A (Housekceping)PGK1B103223646_g1POU Class 5 homeobox 1 (OCT4)PFK2B03278318_s1RE1-Silencing Transcription FactorSCDB104307509_mlSuccinate Dehydrogenase Complex Flavoprotein Subunit A (Housekceping)SULAB03258514_g1Solute Carrier Family 2 (facilitated glucos		•	
IGFBP2Bt01040719_m1Insulin-Like Growth Factor Binding Protein 2IGFBP4Bt033259500_m1Insulin-Like Growth Factor Binding Protein 4KEAP1Bt03317661_m1Kelch-Like ECH-Associated Protein 1KR78Bt03225178_g1Keratin 8LIFRBt04310863_m1Leukaemia Inhibitory Factor ReceptorLPLBt0321092_m1LumicanMAPKIBt03210718_g1Mitogen-Activated Protein KinaseMORF4L2Bt0322094_m1Mitochondrial Translational Initiation Factor 3MANOGBt03220941_m1Nuclear Factor (erythroid-derived 2)-Like 2NFE2L2Bt03220541_m1Nuclear Factor (erythroid-derived 2)-Like 2NFE2L2Bt03272789_g1Nuclear Factor (erythroid-derived 2)-Like 2NFRB2Bt03218031_m1NLR Family, Pyrin Domain Containing 5NRP2Bt03218031_m1NLR Family, Pyrin Domain Containing 5NRP2Bt03218031_m1NLR Family, Pyrin Domain Containing 5OCI.NBt0322519_m1OccludinOTX2Bt031651_m1PhosphofructokinasePGK1Bt03223846_g1POU Class 5 homeobox 1 (OCT4)PFKPBt03223684_m1Prosphofycerate Kinase 1PK71Bt03223684_m1Peroxiredoxin-1RESTBt03215311_m1Soluc Carrier Family 2 (facilitated glucose transporter), Member 1SUC2A3Bt03223684_m1Peroxiredoxin-1RESTBt032257632_m1Stearoy1-CoA DesaturaseSOD1Bt03215314_m1Soluc Carrier Family 2 (facilitated glucose transporter), Member 5SOD1Bt03215412_g1Sol		•	
IGFBP4Bt03259500_m1Insulin-Like Growth Factor Binding Protein 4KEAP1Bt03817661_m1Kelch-Like ECH-Associated Protein 1KR78Bt03225178_g1Keratin 8LIFRBt04310863_m1Leukaemia Inhibitory Factor ReceptorLPLBt0321020_m1LumicanMAPK1Bt03216718_g1Mitogen-Activated Protein LipaseLUMBt03211920_m1LumicanMAPK1Bt03216718_g1Mitochondrial Translational Inhibitory Factor 4 Like 2MORF41.2Bt03221844_m1Mitochondrial Translational Inhibitoria Factor 3NANOGBt03220541_m1Nuclear Factor (erythroid-derived 2)-Like 2NFKB2Bt03218031_m1Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in B-Cells 2NLPR5Bt03218031_m1NLR Family, Pyrin Domain Containing 5NRP2Bt03218031_m1NLR Family, Pyrin Domain Containing 5NRP2Bt03218031_g1Orthodenticle Homeobox 2PAF1Bt0322384_m1PhosphofructokinasePGK1Bt0322384_m1PhosphofructokinasePGK1Bt03223844_m1PhosphofructokinasePGK1Bt03223844_m1Peroxiredoxin-1RESTBt03223844_m1Stearoyl-CoA DesaturaseSDHABt03215314_m1Stearoyl-CoA DesaturaseSDHABt03259514_g1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A5Bt032258296_m1Superoxide Dismutase 2, MitochondrialSOD1Bt03259514_g1Solute Carrier Family 2 (facilitated glucose transporter), Member 3Solute Carrier Family 2 (facili	_		-
KEAP1Bt03817661_m1Kelch-Like ECH-Associated Protein 1KR78Bt03225178_g1Keratin 8LIFRBt0310863_m1Leukaemia Inhibitory Factor ReceptorLPLBt03240493_m1Lipoptotein LipaseLUMBt03211920_m1LumicanMAPKIBt03216718_g1Mitogen-Activated Protein KinaseMORF4L2Bt03216718_g1Moreality Factor 4 Like 2MTIF3Bt0321844_m1Mitochondrial Translational Initiation Factor 3NANOGBt03220541_m1Nanog HomeoboxNFE2L2Bt03221880_m1Nuclear Factor (erythroid-derived 2)-Like 2NLPR5Bt0321801_m1NLR Family, Pyrin Domain Containing 5NLPR5Bt03218031_m1NLR Family, Pyrin Domain Containing 5NRP2Bt04316531_g1Orthodenticle Homeobox 2PAF1Bt03225851_m1PhosphofructokinasePGK1Bt03225854_mHPhosphoglycerate Kinase 1PKPBt03225854_mHPhosphoglycerate Kinase 1PKPBt0322584_m1Phosphoglycerate Kinase 1PKPBt0322884_m1Peroxiredoxin-1RESTBt0322846_g1POU Class 5 homeobox 1 (OCT4)PFIABt0322846_m1Peroxiredoxin-1KESTBt03218314_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 3SDIABt03225829_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 3SOL2A1Bt03225829_m1Superoxide Dismutase 2, MitochondrialSON2Bt032541_g1Solute Carrier Family 2 (facilitated glucose transporter), Member 5SOD1			-
KRT8Bt03225178_g1Keratin 8LIFRBt04310863_m1Leukaemia Inhibitory Factor ReceptorLPLBt03240493_m1Lipoprotein LipaseLUMBt03211920_m1LumicanMAPK1Bt03216718_g1Mitogen-Activated Protein KinaseMORF412Bt03270996_m1Mortality Factor 4 Like 2MTIF3Bt03220541_m1Nanog HomeoboxNFE212Bt03251880_m1Nuclear Factor (crythroid-derived 2)-Like 2NFKB2Bt03272789_g1Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in B-Cells 2NLPRSBt03212789_g1Nuclear Factor (crythroid-derived 2)-Like 2NRP2Bt031631_m1NLR Family, Pyrin Domain Containing 5NRP2Bt0431673_m1NLR Family, Pyrin Domain Containing 5OCLNBt03255219_m1OccludinOTX2Bt0431651_m1PhosphoftuctokinasePGK1Bt03225854_mHPhosphoftuctokinasePGK1Bt03223684_g1POU Class 5 homeobox 1 (OCT4)PFKPBt03223684_m1Peroxiredoxin-1RESTBt03223684_m1Peroxiredoxin-1RESTBt03223684_m1Peroxiredoxin-1SLC2A3Bt03259514_g1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A4Bt0325451_m1Superoxide Dismutase 1, SolubeSOD1Bt03215423_g1Superoxide Dismutase 1, SolubeSOD2Bt03215423_g1Superoxide Dismutase 1, SolubeSOD2Bt03215423_g1Superoxide Dismutase 1, SolubeSOD2Bt03215423_g1Superoxide Dismutase 1, Solube<	-		-
LIFRBt04310863_m1Leukaemia Inhibitory Factor ReceptorLPLBt03240493_m1Lipoprotein LipaseLUMBt03211920_m1LumicanMAPKIBt03216718_g1Mitogen-Activated Protein KinaseMORF4L2Bt03270996_m1Mortality Factor 4 Like 2MTIF3Bt03220541_m1Nanog HomeoboxNFE2L2Bt03251880_m1Nuclear Factor (erythroid-derived 2)-Like 2NFKB2Bt03272789_g1Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in B-Cells 2NLPR5Bt03218031_m1NLR Family, Pyrin Domain Containing 5NRP2Bt04316732_m1Natriuretic Peptide Receptor 2OCLNBt03255219_m1OccludinOTX2Bt0431651_m1PhosphoftructokinasePGK1Bt03225854_mHPhosphoftructokinasePGK1Bt03222854_g1POU Class 5 homeobox 1 (OCT4)PFR2Bt0322684_m1Peroxiredoxin-1RESTBt03223846_g1POU Class 5 homeobox 1 (OCT4)PFIABt03223845_g1Sucinate Dehydrogenase Complex Flavoprotein Subunit A (Housekeeping)SLC2A1Bt03215318_s1RE1-Silencing Transcription FactorSCDBt04307476_m1Stearoyl-CoA DesaturaseSDHABt043259514_g1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A3Bt03259514_g1Superoxide Dismutase 1, SolubleSOD1Bt03215423_g1Superoxide Dismutase 1, SolubleSOD2Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt03276370_m1Sterol Regulatory Element Bindi		_	
LPLBt03240493_m1Lipoprotein LipaseLUMBt03211920_m1LumicanMAPKIBt03216718_g1Mitogen-Activated Protein KinaseMORF4L2Bt03270996_m1Mortality Factor 4 Like 2MTIF3Bt03231844_m1Mitochondrial Translational Initiation Factor 3NANOGBt03220541_m1Nanog HomeoboxNFE2L2Bt03251880_m1Nuclear Factor (crythroid-derived 2)-Like 2NFKB2Bt03272789_g1Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in B-Cells 2NLPR5Bt03218031_m1NLR Family, Pyrin Domain Containing 5NRP2Bt04316732_m1Nutriuretic Peptide Receptor 2OCLNBt03255219_m1OccludinOTX2Bt04316531_m1PhosphoftuctokinasePKFPBt04316551_m1PhosphoftuctokinasePGKIBt03225854_mHPhosphoftuctokinasePGKIBt03223846_g1POU Class 5 homeobox 1 (OCT4)PPIABt03223846_g1POU Class 5 homeobox 1 (OCT4)PPIABt03223846_g1Peroxiredoxin-1RESTBt03278318_s1RE1-Silencing Transcription FactorSCDBt04307476_m1Succinate Dehydrogenase Complex Flavoprotein Subunit A (Housekeeping)SDIABt03215314_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A3Bt03258296_m1Superoxide Dismutase 1, SolubleSOD1Bt03215423_g1Superoxide Dismutase 2, MitochondrialSOD2Bt03215423_g1Superoxide Dismutase 2, MitochondrialSOD2Bt03276370_m1Sterol Regulatory Element Binding		•	
LUMBt03211920_m1LumicanMAPK1Bt03216718_g1Mitogen-Activated Protein KinaseMOR74L2Bt03270996_m1Mortality Factor 4 Like 2MTIF3Bt03231844_m1Mitochondrial Translational Initiation Factor 3NANOGBt03220541_m1Nanog HomeoboxNFE2L2Bt03251880_m1Nuclear Factor (crythroid-derived 2)-Like 2NILPR5Bt03272789_g1Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in B-Cells 2NLPR5Bt0325219_m1NLR Family, Pyrin Domain Containing 5NRP2Bt04316732_m1NLR Family, Pyrin Domain Containing 5OCLNBt03255219_m1OccludinOTX2Bt04316551_m1PhosphofructokinasePGK1Bt03223846_g1Othodenticle Homeobox 1PKP2Bt03225852_m1PlakophilinPOUSF1Bt03223846_g1POU Class 5 homeobox 1 (OCT4)PFIABt03223846_g1Peroxiredoxin-1RESTBt03278318_s1RE1-Silencing Transcription FactorSCDBt04307476_m1Succinate Dehydrogenase Complex Flavoprotein Subunit A (Housekceping)SLC2A3Bt03258514_g1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A5Bt03258296_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 3SOD1Bt03225871_g1Superoxide Dismutase 1, SolubleSOD2Bt03258714_g1Superoxide Dismutase 1, SolubleSOD2Bt0325871_g1Signal Transcription Factor of Transcription FISTAT3Bt03250871_g1Signal Transcuer and Activator of Transcription 71 <th></th> <th></th> <th></th>			
MARK1Bt03216718_g1Mitogen-Activated Protein KinaseMORF4L2Bt03270996_m1Mortality Factor 4 Like 2MTIF3Bt03231844_m1Mitochondrial Translational Initiation Factor 3NANOGBt03220541_m1Nanog HomeoboxNFE2L2Bt032251880_m1Nuclear Factor (crythroid-derived 2)-Like 2NFKB2Bt03272789_g1Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in B-Cells 2NLPR5Bt03218031_m1NLR Family, Pyrin Domain Containing 5NRP2Bt04316732_m1Natriuretic Peptide Receptor 2OCLNBt03255219_m1OccludinOTX2Bt04316551_m1PhosphofructokinasePKPBt04316551_m1PhosphofructokinasePKP2Bt03228846_g1POU Class 5 homeobox 1 (OCT4)PFKBt03223846_g1Petridylprolyl Isomerase A (Housekceping)PRX1Bt03223846_g1Petrotyl-CoA DesaturaseSDHABt04307476_m1Succinate Dehydrogenase Complex Flavoprotein Subunit A (Housekceping)SLC2A1Bt03215314_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A5Bt03258296_m1Succinate Dehydrogenase Complex Flavoprotein Subunit A (Housekceping)SDD1Bt03215423_g1Superoxide Dismutase 1, SolubleSOD2Bt03215824_m1Superoxide Dismutase 1, SolubleSOD3Bt03258714_g1Superoxide Dismutase 1, SolubleSOD4Bt03258714_g1Superoxide Dismutase 1, SolubleSOD5Bt03215423_g1Superoxide Dismutase 1, SolubleSOD6Bt03215423_g1Superoxide Dismutase			
MORF4L2Bt03270996_m1Mortality Factor 4 Like 2MTIF3Bt03231844_m1Mitochondrial Translational Initiation Factor 3NANOGBt03220541_m1Nanog HomeoboxNFE2L2Bt03251880_m1Nuclear Factor (crythroid-derived 2)-Like 2NFKB2Bt03272789_g1Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in B-Cells 2NLPR5Bt03218031_m1NLR Family, Pyrin Domain Containing 5NRP2Bt04316732_m1Natriuretic Peptide Receptor 2OCLNBt03255219_m1OccludinOTX2Bt04316531_g1Orthodenticle Homeobox 2PAF1Bt03229371_g1RNA Polymerase II Associated FactorPFKPBt04316551_m1PhosphofructokinasePGK1Bt03225854_m1PhosphofructokinasePGK1Bt03223846_g1POU Class 5 homeobox 1 (OCT4)PP1ABt03223846_g1Petroiredoxin-1RESTBt03223846_g1Petroiredoxin-1RESTBt03223846_g1Staroyl-CoA DesaturaseSDHABt04307509_m1Succinate Dehydrogenase Complex Flavoprotein Subunit A (Housekeeping)FL2A3Bt03259514_g1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A5Bt03258296_m1Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 3SDD1Bt03258296_m1Superoxide Dismutase 1, SolubleSOD2Bt0325871_g1Superoxide Dismutase 1, SolubleSOD3Bt03258731_g1Superoxide Dismutase 1, SolubleSOD4Bt03258731_g1Signal Transcription Factor A, MitochondrialS			
MTIF3Bt03231844_m1Mitochondrial Translational Initiation Factor 3NANOGBt03220541_m1Nanog HomeoboxNFE2L2Bt03251880_m1Nuclear Factor (erythroid-derived 2)-Like 2NFKB2Bt03272789_g1Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in B-Cells 2NLPR5Bt03218031_m1NLR Family, Pyrin Domain Containing 5NRP2Bt04316732_m1Natriuretic Peptide Receptor 2OCLNBt03255219_m1OccludinOTX2Bt04316301_g1Orthodenticle Homeobox 2PAF1Bt03229371_g1RNA Polymerase II Associated FactorPFKPBt04316551_m1PhosphofructokinasePGK1Bt03225854_mHPhosphoglycerate Kinase 1PKP2Bt03226864_g1POU Class 5 homeobox 1 (OCT4)PPIABt03223864_g1Peptidylprolyl Isomerase A (Housekeeping)PRDX1Bt03223884_g1RE1-Silencing Transcription FactorSCDBt04307509_m1Succinate Dehydrogenase Complex Flavoprotein Subunit A (Housekeeping)SLC2A3Bt032258296_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A5Bt03258296_m1Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 3SOD1Bt03215423_g1Superoxide Dismutase 2, MitochondrialSO22Bt03278318_s1SRY (sex determining region Y)-Box 2SREBF1Bt03226770_m1Sterol Regulatory Element Binding Transcription 3TFAMBt03226078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A </th <th></th> <th>•</th> <th></th>		•	
MANOGBt03220541_m1Nanog HomeoboxNFE2L2Bt03251880_m1Nuclear Factor (erythroid-derived 2)-Like 2NFKB2Bt03272789_g1Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in B-Cells 2NLPR5Bt03218031_m1NLR Family, Pyrin Domain Containing 5NRP2Bt04316732_m1NLR Family, Pyrin Domain Containing 5OCLNBt03255219_m1OccludinOTX2Bt04316301_g1Orthodenticle Homeobox 2PAF1Bt03239371_g1RNA Polymerase II Associated FactorPFKPBt04316551_m1PhosphofructokinasePGK1Bt03225854_mHPhosphoglycerate Kinase 1PK22Bt0322647_g1Peptidylprolyl Isomerase A (Housekeeping)PDX1Bt03223646_m1Peroxiredoxin-1RESTBt03223684_m1Stearoyl-CoA DesaturaseSDHABt04307509_m1Succinate Dehydrogenase Complex Flavoprotein Subunit A (Housekeeping)SLC2A1Bt03259514_g1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A5Bt03258296_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 3SOD1Bt03215423_g1Superoxide Dismutase 1, SolubleSOD2Bt03278318_s1Sterol Regulatory Element Binding Transcription FISA223Bt03259871_g1Superoxide Dismutase 2, MitochondrialSO22Bt03258296_m1Superoxide Dismutase 1, SolubleSOD2Bt03278318_s1Sterol Regulatory Element Binding Transcription FISA245Bt03225871_g1Signal Transducer and Activator of Transcription 3TFAM			-
NFE2L2Bt03251880_m1Nuclear Factor (erythroid-derived 2)-Like 2NFKB2Bt03272789_g1Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in B-Cells 2NLPR5Bt03218031_m1NLR Family, Pyrin Domain Containing 5NRP2Bt04316732_m1Natriuretic Peptide Receptor 2OCLNBt03255219_m1OccludinOTX2Bt04316301_g1Orthodenticle Homeobox 2PAF1Bt03239371_g1RNA Polymerase II Associated FactorPFKPBt04316551_m1PhosphofructokinasePGK1Bt03225854_mHPhosphoglycerate Kinase 1PK2Bt03225632_m1PlakophilinPOU5F1Bt03223684_g1POU Class 5 homeobox 1 (OCT4)PPIABt0322684_m1Peroxiredoxin-1RESTBt03278318_s1RE1-Silencing Transcription FactorSCDBt04307509_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A3Bt03259514_g1Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 3SD1Bt03215423_g1Superoxide Dismutase 1, SolubleSOD1Bt03215423_g1Superoxide Dismutase 1, SolubleSOD2Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt0320078_m1Transcription Factor A, MitochondrialVEGFABt0320078_m1Transcription Factor A, Mitochondrial			
NFKB2Bt03272789_g1Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in B-Cells 2NLPR5Bt03218031_m1NLR Family, Pyrin Domain Containing 5NRP2Bt04316732_m1Natriuretic Peptide Receptor 2OCLNBt03255219_m1OccludinOTX2Bt04316301_g1Orthodenticle Homeobox 2PAF1Bt03239371_g1RNA Polymerase II Associated FactorPFKPBt04316551_m1PhosphofructokinasePGK1Bt0322584_mHPhosphoglycerate Kinase 1PKP2Bt03227632_m1PlakophilinPOU5F1Bt03223646_g1POU Class 5 homeobox 1 (OCT4)PPIABt03224617_g1Peptidylprolyl Isomerase A (Housekeeping)PRX1Bt03223684_m1Peroxiredoxin-1RESTBt03276370_m1Stearoyl-CoA DesaturaseSDHABt04307509_m1Soute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A3Bt03215414_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 3SoD1Bt03215423_g1Soute Carrier Family 2 (facilitated glucose transporter), Member 3SO2Bt03215423_g1Superoxide Dismutase 1, SolubleSO2Bt03215423_g1Superoxide Dismutase 2, MitochondrialSOX2Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt032269871_g1Signal Transducer and Activator of Transcription 3TFAMBt03260078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A			_
NFRB2B03212789_g1Cells 2NLPR5Bt03218031_m1NLR Family, Pyrin Domain Containing 5NRP2Bt04316732_m1Natriuretic Peptide Receptor 2OCLNBt03255219_m1OccludinOTX2Bt04316301_g1Orthodenticle Homeobox 2PAF1Bt03239371_g1RNA Polymerase II Associated FactorPFKPBt04316551_m1PhosphofructokinasePGK1Bt03225854_mHPhosphoglycerate Kinase 1PKP2Bt03257632_m1PlakophilinPOU5F1Bt03223846_g1POU Class 5 homeobox 1 (OCT4)PPIABt03224617_g1Peptidylprolyl Isomerase A (Housekeeping)PRX1Bt03223846_m1Peroxiredoxin-1RESTBt032278318_s1RE1-Silencing Transcription FactorSCDBt04307476_m1Stearoyl-CoA DesaturaseSDHABt04307509_m1Succinate Dehydrogenase Complex Flavoprotein Subunit A (Housekeeping)SLC2A1Bt03215314_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A5Bt03215423_g1Superoxide Dismutase 1, SolubleSOD2Bt03215423_g1Superoxide Dismutase 2, MitochondrialSOX2Bt032278318_s1SRY (sex determining region Y)-Box 2SREBF1Bt03226078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A			
NRP2Bt04316732_m1Natriuretic Peptide Receptor 2OCLNBt03255219_m1OccludinOTX2Bt04316301_g1Orthodenticle Homeobox 2PAF1Bt03239371_g1RNA Polymerase II Associated FactorPFKPBt04316551_m1PhosphofructokinasePGK1Bt03225854_mHPhosphoglycerate Kinase 1PK2Bt03257632_m1PlakophilinPOU5F1Bt03223846_g1POU Class 5 homeobox 1 (OCT4)PFIABt03224617_g1Peptidylprolyl Isomerase A (Housekeeping)PRDX1Bt03223684_m1Peroxiredoxin-1RESTBt03278318_s1RE1-Silencing Transcription FactorSCDBt04307476_m1Stearoyl-CoA DesaturaseSDHABt03215314_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A3Bt03259514_g1Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 3SOD1Bt03215423_g1Superoxide Dismutase 1, SolubleSOD2Bt03278318_s1SRY (sex determining region Y)-Box 2SREBF1Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt03259871_g1Signal Transducer and Activator of Transcription 3TFAMBt03213282_m1Vascular Endothelial Growth Factor A	NFKB2	Bt03272789_g1	
OCLNBt03255219_m1OccludinOTX2Bt04316301_g1Orthodenticle Homeobox 2PAF1Bt03239371_g1RNA Polymerase II Associated FactorPFKPBt04316551_m1PhosphofructokinasePGK1Bt03225854_mHPhosphoglycerate Kinase 1PKP2Bt03257632_m1PlakophilinPOUSF1Bt03223846_g1POU Class 5 homeobox 1 (OCT4)PFIABt03224617_g1Peptidylprolyl Isomerase A (Housekeeping)PRDX1Bt03223684_m1Peroxiredoxin-1RESTBt03278318_s1RE1-Silencing Transcription FactorSCDBt04307476_m1Stearoyl-CoA DesaturaseSDHABt03215314_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A3Bt03259514_g1Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 3SDD1Bt03215423_g1Superoxide Dismutase 1, SolubleSOD2Bt03278318_s1SRY (sex determining region Y)-Box 2SREBF1Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt03259871_g1Signal Transducer and Activator of Transcription 3TFAMBt03213282_m1Vascular Endothelial Growth Factor A	NLPR5	Bt03218031_m1	NLR Family, Pyrin Domain Containing 5
OTX2Bt04316301_g1Orthodenticle Homeobox 2PAF1Bt03239371_g1RNA Polymerase II Associated FactorPFKPBt04316551_m1PhosphofructokinasePGK1Bt03225854_mHPhosphoglycerate Kinase 1PKP2Bt03257632_m1PlakophilinPOU5F1Bt03223846_g1POU Class 5 homeobox 1 (OCT4)PPIABt03224617_g1Peptidylprolyl Isomerase A (Housekeeping)PRDX1Bt03223684_m1Peroxiredoxin-1RESTBt03278318_s1RE1-Silencing Transcription FactorSCDBt04307476_m1Stearoyl-CoA DesaturaseSDHABt03259514_g1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A3Bt03258296_m1Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 3SDD1Bt03215423_g1Superoxide Dismutase 1, SolubleSOD2Bt03278318_s1SRY (sex determining region Y)-Box 2SREBF1Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt03259871_g1Signal Transducer and Activator of Transcription 3TFAMBt03226078_m1Transcription Factor A, Mitochondrial	NRP2	Bt04316732_m1	Natriuretic Peptide Receptor 2
PAF1Bt03239371_g1RNA Polymerase II Associated FactorPFKPBt04316551_m1PhosphofructokinasePGK1Bt03225854_mHPhosphoglycerate Kinase 1PKP2Bt03257632_m1PlakophilinPOU5F1Bt03223846_g1POU Class 5 homeobox 1 (OCT4)PPIABt03224617_g1Peptidylprolyl Isomerase A (Housekeeping)PRDX1Bt03223684_m1Peroxiredoxin-1RESTBt03278318_s1RE1-Silencing Transcription FactorSCDBt04307476_m1Stearoyl-CoA DesaturaseSDHABt04307509_m1Succinate Dehydrogenase Complex Flavoprotein Subunit A (Housekeeping)SLC2A1Bt03215314_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A3Bt03259514_g1Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 3SDD1Bt03215423_g1Superoxide Dismutase 1, SolubleSOD2Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt032278971_g1Signal Transducer and Activator of Transcription 3TFAMBt03260078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A	OCLN	Bt03255219_m1	Occludin
PFKPBt04316551_m1PhosphofructokinasePGK1Bt03225854_mHPhosphoglycerate Kinase 1PKP2Bt03257632_m1PlakophilinPOU5F1Bt03223846_g1POU Class 5 homeobox 1 (OCT4)PPIABt03224617_g1Peptidylprolyl Isomerase A (Housekeeping)PRDX1Bt03223684_m1Peroxiredoxin-1RESTBt03278318_s1RE1-Silencing Transcription FactorSCDBt04307476_m1Stearoyl-CoA DesaturaseSDHABt04307509_m1Succinate Dehydrogenase Complex Flavoprotein Subunit A (Housekeeping)SLC2A1Bt03215314_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A3Bt03259514_g1Solute Carrier Family 2 (facilitated glucose transporter), Member 3SDD1Bt03215423_g1Superoxide Dismutase 1, SolubleSOD2Bt0327476370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt03259871_g1Signal Transducer and Activator of Transcription 3TFAMBt03226078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A	OTX2	Bt04316301_g1	Orthodenticle Homeobox 2
PGK1Bt03225854_mHPhosphoglycerate Kinase 1PKP2Bt03257632_m1PlakophilinPOU5F1Bt03223846_g1POU Class 5 homeobox 1 (OCT4)PP1ABt03224617_g1Peptidylprolyl Isomerase A (Housekeeping)PRDX1Bt03223684_m1Peroxiredoxin-1RESTBt03223846_m1Peroxiredoxin-1RESTBt032278318_s1RE1-Silencing Transcription FactorSCDBt04307476_m1Stearoyl-CoA DesaturaseSDHABt04307509_m1Succinate Dehydrogenase Complex Flavoprotein Subunit A (Housekeeping)SLC2A1Bt03215314_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A3Bt03259514_g1Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 3SOD1Bt03215423_g1Superoxide Dismutase 1, SolubleSOD2Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt03259871_g1Signal Transducer and Activator of Transcription 3TFAMBt03260078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A	PAF1	Bt03239371_g1	RNA Polymerase II Associated Factor
PKP2Bt03257632_m1PlakophilinPOU5F1Bt03223846_g1POU Class 5 homeobox 1 (OCT4)PPIABt03224617_g1Peptidylprolyl Isomerase A (Housekeeping)PRDX1Bt03223684_m1Peroxiredoxin-1RESTBt03223684_m1Peroxiredoxin-1RESTBt03278318_s1RE1-Silencing Transcription FactorSCDBt04307476_m1Stearoyl-CoA DesaturaseSDHABt04307509_m1Succinate Dehydrogenase Complex Flavoprotein Subunit A (Housekeeping)SLC2A1Bt03215314_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A3Bt03259514_g1Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 3SDL2Bt03215423_g1Superoxide Dismutase 1, SolubleSOD1Bt03215423_g1Superoxide Dismutase 2, MitochondrialSOX2Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt03259871_g1Signal Transducer and Activator of Transcription 3TFAMBt03213282_m1Vascular Endothelial Growth Factor A, Mitochondrial	PFKP	Bt04316551_m1	Phosphofructokinase
POU5F1Bt03223846_g1POU Class 5 homeobox 1 (OCT4)PPIABt03224617_g1Peptidylprolyl Isomerase A (Housekeeping)PRDX1Bt03223684_m1Peroxiredoxin-1RESTBt03278318_s1RE1-Silencing Transcription FactorSCDBt04307476_m1Stearoyl-CoA DesaturaseSDHABt04307509_m1Succinate Dehydrogenase Complex Flavoprotein Subunit A (Housekeeping)SLC2A1Bt03215314_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A3Bt03259514_g1Solute Carrier Family 2 (facilitated glucose transporter), Member 3SLC2A5Bt03215423_g1Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 5SOD1Bt03215423_g1Superoxide Dismutase 1, SolubleSO22Bt03278318_s1SRY (sex determining region Y)-Box 2SREBF1Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt03259871_g1Signal Transducer and Activator of Transcription 3TFAMBt032260078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A	PGK1	Bt03225854_mH	Phosphoglycerate Kinase 1
PPIABt03224617_g1Peptidylprolyl Isomerase A (Housekeeping)PRDX1Bt03223684_m1Peroxiredoxin-1RESTBt03278318_s1RE1-Silencing Transcription FactorSCDBt04307476_m1Stearoyl-CoA DesaturaseSDHABt04307509_m1Succinate Dehydrogenase Complex Flavoprotein Subunit A (Housekeeping)SLC2A1Bt03215314_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A3Bt03259514_g1Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 3SLC2A5Bt03258296_m1Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 5SOD1Bt03215423_g1Superoxide Dismutase 1, SolubleSOX2Bt03278318_s1SRY (sex determining region Y)-Box 2SREBF1Bt03226370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt03260078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A	PKP2	Bt03257632_m1	Plakophilin
PRDX1Bt03223684_mlPeroxiredoxin-1RESTBt03278318_s1RE1-Silencing Transcription FactorSCDBt04307476_mlStearoyl-CoA DesaturaseSDHABt04307509_mlSuccinate Dehydrogenase Complex Flavoprotein Subunit A (Housekeeping)SLC2A1Bt03215314_mlSolute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A3Bt03259514_g1Solute Carrier Family 2 (facilitated glucose transporter), Member 3SLC2A5Bt03258296_mlSolute Carrier Family 2 (facilitated glucose/fructose transporter), Member 5SOD1Bt03215423_g1Superoxide Dismutase 1, SolubleSO22Bt03278318_s1SRY (sex determining region Y)-Box 2SREBF1Bt03276370_mlSterol Regulatory Element Binding Transcription F1STAT3Bt03260078_mlTranscription Factor A, MitochondrialVEGFABt03213282_mlVascular Endothelial Growth Factor A	POU5F1	Bt03223846_g1	POU Class 5 homeobox 1 (OCT4)
RESTBt03278318_s1RE1-Silencing Transcription FactorSCDBt04307476_m1Stearoyl-CoA DesaturaseSDHABt04307509_m1Succinate Dehydrogenase Complex Flavoprotein Subunit A (Housekeeping)SLC2A1Bt03215314_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A3Bt03259514_g1Solute Carrier Family 2 (facilitated glucose transporter), Member 3SLC2A5Bt03258296_m1Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 5SOD1Bt03215423_g1Superoxide Dismutase 1, SolubleSOD2Bt03278318_s1Superoxide Dismutase 2, MitochondrialSOX2Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt03260078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A	PPIA	Bt03224617_g1	Peptidylprolyl Isomerase A (Housekeeping)
SCDBt04307476_m1Stearoyl-CoA DesaturaseSDHABt04307509_m1Succinate Dehydrogenase Complex Flavoprotein Subunit A (Housekeeping)SLC2A1Bt03215314_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A3Bt03259514_g1Solute Carrier Family 2 (facilitated glucose transporter), Member 3SLC2A5Bt03258296_m1Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 5SOD1Bt03215423_g1Superoxide Dismutase 1, SolubleSOD2Bt03278318_s1SRY (sex determining region Y)-Box 2SREBF1Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt03260078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A	PRDX1	Bt03223684_m1	Peroxiredoxin-1
SDHABt04307509_m1Succinate Dehydrogenase Complex Flavoprotein Subunit A (Housekeeping)SLC2A1Bt03215314_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A3Bt03259514_g1Solute Carrier Family 2 (facilitated glucose transporter), Member 3 Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 3SLC2A5Bt03258296_m1Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 5SOD1Bt03215423_g1Superoxide Dismutase 1, SolubleSOD2Bt03244551_m1Superoxide Dismutase 2, MitochondrialSOX2Bt03278318_s1SRY (sex determining region Y)-Box 2SREBF1Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt03260078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A	REST	Bt03278318_s1	RE1-Silencing Transcription Factor
SDHABt04307509_m1(Housekeeping)SLC2A1Bt03215314_m1Solute Carrier Family 2 (facilitated glucose transporter), Member 1SLC2A3Bt03259514_g1Solute Carrier Family 2 (facilitated glucose transporter), Member 3SLC2A5Bt03258296_m1Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 5SOD1Bt03215423_g1Superoxide Dismutase 1, SolubleSOD2Bt03244551_m1Superoxide Dismutase 2, MitochondrialSOX2Bt03278318_s1SRY (sex determining region Y)-Box 2SREBF1Bt03259871_g1Signal Transducer and Activator of Transcription 51STAT3Bt03260078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A	SCD	Bt04307476_m1	Stearoyl-CoA Desaturase
SLC2A3Bt03259514_g1Solute Carrier Family 2 (facilitated glucose transporter), Member 3 Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 5SOD1Bt03215423_g1Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 5SOD2Bt03215423_g1Superoxide Dismutase 1, SolubleSOD2Bt03244551_m1Superoxide Dismutase 2, MitochondrialSOX2Bt03278318_s1SRY (sex determining region Y)-Box 2SREBF1Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt03259871_g1Signal Transducer and Activator of Transcription 3TFAMBt03260078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A	SDHA	Bt04307509_m1	
SLC2A5Bt03258296_m1Solute Carrier Family 2 (facilitated glucose/fructose transporter), Member 5SOD1Bt03215423_g1Superoxide Dismutase 1, SolubleSOD2Bt03244551_m1Superoxide Dismutase 2, MitochondrialSOX2Bt03278318_s1SRY (sex determining region Y)-Box 2SREBF1Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt03259871_g1Signal Transducer and Activator of Transcription 3TFAMBt03260078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A	SLC2A1	Bt03215314_m1	Solute Carrier Family 2 (facilitated glucose transporter), Member 1
SLC2ASBt03258296_m1Member 5SOD1Bt03215423_g1Superoxide Dismutase 1, SolubleSOD2Bt03244551_m1Superoxide Dismutase 2, MitochondrialSOX2Bt03278318_s1SRY (sex determining region Y)-Box 2SREBF1Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt03259871_g1Signal Transducer and Activator of Transcription 3TFAMBt03260078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A	SLC2A3	Bt03259514_g1	Solute Carrier Family 2 (facilitated glucose transporter), Member 3
SOD2Bt03244551_m1Superoxide Dismutase 2, MitochondrialSOX2Bt03278318_s1SRY (sex determining region Y)-Box 2SREBF1Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt03259871_g1Signal Transducer and Activator of Transcription 3TFAMBt03260078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A	SLC2A5	Bt03258296_m1	
SOX2Bt03278318_s1SRY (sex determining region Y)-Box 2SREBF1Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt03259871_g1Signal Transducer and Activator of Transcription 3TFAMBt03260078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A	SOD1	Bt03215423_g1	
SREBF1Bt03276370_m1Sterol Regulatory Element Binding Transcription F1STAT3Bt03259871_g1Signal Transducer and Activator of Transcription 3TFAMBt03260078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A	SOD2	Bt03244551_m1	Superoxide Dismutase 2, Mitochondrial
STAT3Bt03259871_g1Signal Transducer and Activator of Transcription 3TFAMBt03260078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A	SOX2	Bt03278318_s1	SRY (sex determining region Y)-Box 2
TFAMBt03260078_m1Transcription Factor A, MitochondrialVEGFABt03213282_m1Vascular Endothelial Growth Factor A	SREBF1	Bt03276370_m1	Sterol Regulatory Element Binding Transcription F1
VEGFA Bt03213282_m1 Vascular Endothelial Growth Factor A	STAT3	Bt03259871_g1	Signal Transducer and Activator of Transcription 3
_	TFAM	Bt03260078_m1	Transcription Factor A, Mitochondrial
XBP1Bt03227621_g1X-Box Binding Protein 1	VEGFA	Bt03213282_m1	Vascular Endothelial Growth Factor A
	XBP1	Bt03227621_g1	X-Box Binding Protein 1

724 † Thermo Fisher Scientific (Wilmington, DE, USA)

ANEXO

1. SUBMISSION

Authors should kindly note that submission implies that the content has not been published or submitted for publication elsewhere except as a brief abstract in the proceedings of a scientific meeting or symposium.

Once the submission materials have been prepared in accordance with the Author Guidelines, manuscripts should be submitted via the journal's ScholarOne site:https://mc.manuscriptcentral.com/mrd. For more details on how to use ScholarOne, visit www.wileyauthors.com/scholarone. Note, this journal uses iThenticate's CrossCheck software to detect instances of overlapping and similar text in submitted manuscripts.

The submission system will prompt the author to use an ORCiD ID (a unique author identifier) to help distinguish their work from that of other researchers. Click here to find out more.

For help with submissions, please contact the Editorial Office: mrdeditorial@wiley.com. When necessary, the Editorial Office staff may refer questions to the Editor-in-Chief.

Return to Guideline Sections

2. AIMS AND SCOPE

Molecular Reproduction and Development takes an integrated, systems-biology approach to understand the dynamic continuum of cellular, reproductive, and developmental processes. This journal fosters dialogue among diverse disciplines through primary research communications and educational forums, with the philosophy that fundamental findings within the life sciences result from a convergence of disciplines.

Increasingly, readers of the Journal need to be informed of diverse, yet integrated, topics impinging on their areas of interest. This requires an expansion in thinking towards non-traditional, interdisciplinary experimental design and data analysis. For example, biologists need to know how nanodevices might be used, while bioengineers need to know how post-translational protein modifications affect developmental mechanisms. The Journal will provide a means for readers to integrate divergent scientific disciplines into their current and future research. Readers will turn to *Molecular Reproduction and Development* not only to learn the latest in research progress, but to become educated in frontier topics of the field of reproductive and developmental biology; students in particular will turn to the Journal to learn about current progress in the diversifying approaches that will become the foundation for the next generation of research. *Return to Guideline Sections*

3. MANUSCRIPT CATEGORIES AND REQUIREMENTS

DESCRIPTION OF SUBMISSION TYPES:

VISIONS highlight the visual impact inherent in the field of reproduction and development. Researchers are encouraged to submit individual figures of visual scientific interest that convey important concepts or lessons without requiring significant text for this section of the journal. Each image should be submitted through the <u>ScholarOne Manuscripts</u> website. Figure formatting must be at least 22 x 28 cm at a resolution of 600 dpi, and must include a title and a legend of less than 250 words that describes the image sufficiently to be understood by a broad audience of researchers. The Editorial Board will evaluate these submissions for their visual impact and scientific content. There are no color figure in-print charges.

CORRESPONDENCE

CORRESPONDENCE is a section of short, ~one journal page (500 words or less, or about one column length total) communications for the research field. This section is devoted to brief research results, announcements of interest to the community, new databases or software program availability, or other research results not appropriate for full-length Research Articles. A single figure may be included when essential, but these figures will be published at no larger than

one column width squared (9 x 9 cm), inclusive of the figure legend text. CORRESPONDENCES should start with a 1-2 sentence introduction or integration into the major point of the communication, and end with the major conclusion obtained. Up to three references may be included (not part of the 500 word limit), with formatting as below for Manuscripts. These submissions are evaluated by the Editorial Board and by external reviewers. At the Editors discretion, CORRESPONDENCE can be published with expanded size (in two journal pages): 1000 words, two figures, and six references.

REVIEWS and **ESSAYS**

Submissions of REVIEWS and ESSAYS are encouraged. The topics of the manuscript are flexible, but they are intended to reach a broad audience of readers in molecular reproduction and development—from investigators in the field, to students learning the material for the first time. Therefore, it is important that the reviews start generally or with a historical perspective to integrate the topic into a larger context. The bulk of the review should be a critical analysis of the current field and should end with important yet-unresolved questions, speculations, and directions for the field in the future. All other formats for the review are as listed below for manuscripts. ESSAYS follow a similar guideline, but the topics may be more speculative, of historical emphasis, or may integrate more than scientific content. There are no color figure in-print charges.

RESEARCH ARTICLES

Molecular Reproduction and Development is an international journal devoted to an integrated approach towards understanding the dynamic continuum of reproductive and developmental processes. As such, the journal is interested in RESEARCH ARTICLES that advance the field by mechanistic discoveries, and by functional understanding. Manuscripts reporting purely descriptive science must be of particular interest to be considered for the journal. MRD particularly encourages manuscripts with a convergence of disciplines, including systems biology, computational modeling, nanoscience, organic chemistry, bioengineering, evolutionary and synthetic biology - all within the framework that describes or reveals a mechanistic aspect of reproduction and development. These submissions are evaluated by the Editorial Board and by accordance with Peer Review external reviewers in the Policv of MRD (see http://mc.manuscriptcentral.com/mrd).

Return to Guideline Sections

4. PREPARING THE SUBMISSION

Parts of the Manuscript

The manuscript should be submitted in separate files: main text file; figures.

Main Text File

The text file should be presented in the following order:

- i. The title;
- ii. The full names of the authors (do not include academic degrees);
- The author's institutional affiliations where the work was conducted, with a footnote for the author's present address if different from where the work was conducted;
- iv. Grant numbers (as applicable-to ensure proper identification of funders with publication requirements-see note under Author Licensing; below);
- v. Abstract and keywords;
- vi. Main text;
- vii. Acknowledgments;
- viii. References;
- ix. Tables (each table complete with title and footnotes);
- x. Figure legends;
- xi. Appendices (if relevant)

Figures and supplementary/supporting information should be supplied as separate files (see below under "Additional Files"). Figures must be clearly labeled.

Authorship

Please refer to the journal's Authorship policy in the Editorial Policies and Ethical Considerations section for details on author listing eligibility.

Acknowledgements

Contributions from anyone who does not meet the criteria for authorship should be listed, with permission from the contributor, in an Acknowledgments section. Financial and material support should also be mentioned. Thanks to anonymous reviewers are not appropriate.

Conflict of Interest Statement

Authors will be asked to provide a conflict of interest statement during the submission process. For details on what to include in this section, see the Conflict of Interest section in the Editorial Policies and Ethical Considerations section below. Submitting authors should ensure they liaise with all co-authors to confirm agreement with the final statement.

Abstract

Please provide an abstract of 200 words (Brief Reports only: max 150 words) containing the major keywords summarizing the article.

Keywords

Please provide three to five keywords.

Main Text

The journal uses US spelling; however, authors may submit using either option, as spelling of accepted papers is converted during the production process.

References

The accuracy of references is the responsibility of the authors. Only published papers and those in press may be included in the reference list. Unpublished data and submitted manuscripts must be cited parenthetically within the text. Personal communications should also be cited within the text; permission in writing from the communicator is required.

References should be prepared according to the *Publication Manual of the American Psychological Association* (6th edition). The APA website includes a range of resources for authors learning to write in APA style, including an overview of the manual, free tutorials on APA Style basics, and an APA Style Blog. For more information about APA referencing style, please also refer to the APA FAQ.

EndNote users can download the style here.

According to APA style, in text citations should follow the author-date method whereby the author's last name and the year of publication for the source should appear in the text, for example, (Jones, 1998). The complete reference list should appear alphabetically by name at the end of the paper.

Authors should note that the APA referencing style requires that a Digital Object Identifier (DOI) be provided for all references where available. Also, for journal articles, issue numbers are not included unless each issue in the volume begins with page one.

Reference examples follow:

Journal article

Beers, S. R., & De Bellis, M. D. (2002). Neuropsychological function in children with maltreatment-related posttraumatic stress disorder. *The American Journal of Psychiatry*, *159*, 483–486. *doi:*10.1176/appi.ajp.159.3.483

Book

Bradley-Johnson, S. (1994). *Psychoeducational assessment of students who are visually impaired or blind: Infancy through high school* (2nd ed.). Austin, TX: Pro-ed.

Internet Document

Norton, R. (2006, November 4). How to train a cat to operate a light switch [Video file]. Retrieved from http://www.youtube.com/watch?v=Vja83KLQXZs

Footnotes

Footnotes should be placed as a list at the end of the paper only, not at the foot of each page. They should be kept to a minimum. Keep footnotes brief; they should contain only short comments tangential to the main argument of the paper and should not include references. They should be numbered in the list and referred to in the text with consecutive, superscript Arabic numerals.

Tables

Tables should be self-contained and complement, not duplicate, information contained in the text. They should be supplied as editable files, not pasted as images. Legends should be concise but comprehensive – the table, legend, and footnotes must be understandable without reference to the text. All abbreviations must be defined in footnotes. Footnote symbols: \dagger , \ddagger , \$, \P , should be used (in that order) and *, **, *** should be reserved for P-values. Statistical measures such as SD or SEM should be identified in the headings.

Figure Legends

Legends should be concise but comprehensive – the figure and its legend must be understandable without reference to the text. Include definitions of any symbols used and define/explain all abbreviations and units of measurement.

Figures

Although authors are encouraged to send the highest quality figures possible, for peer-review purposes, a wide variety of formats, sizes, and resolutions are accepted. Click here for the basic figure requirements for figures submitted with manuscripts for initial peer review, as well as the more detailed post-acceptance figure requirements.

Figures submitted in color will be reproduced in color online free of charge. Please note, however, that it is preferable that line figures (e.g. graphs and charts) are supplied in black and white so that they are legible if printed by a reader in black and white. For figures requiring color in order to be understood in the print version of the journal, a fee will be charged by the publisher.

Guidelines for Cover Submissions

If you would like to send suggestions for artwork related to your manuscript to be considered to appear on the cover of the journal, please follow these general guidelines.

Additional Files

Supporting Information

Supporting information is information that is not essential to the article, but provides greater depth and background. It is hosted online and appears without editing or typesetting. It may include tables, figures, videos, datasets, etc.

Click here for Wiley's FAQs on Supporting Information.

Note: if data, scripts, or other artefacts used to generate the analyses presented in the paper are available via a publicly available data repository, authors should include a reference to the location of the material within their paper.

General Style Points

The following points provide general advice on formatting and style.

- **Abbreviations**: In general, terms should not be abbreviated unless they are used repeatedly and the abbreviation is helpful to the reader. Initially, use the word in full, followed by the abbreviation in parentheses. Thereafter use the abbreviation only.
- Units of measurement: Measurements should be given in SI or SI-derived units. Visit the Bureau International des Poids et Mesures (BIPM) website for more information about SI units.
- **Numbers**: numbers under 10 should be spelt out, except for: measurements with a unit (8 mmol/L); age (6 weeks old), or lists with other numbers (11 dogs, 9 cats, 4 gerbils).
- **Trade Names**: Chemical substances should be referred to by the generic name only. Trade names should not be used. Drugs should be referred to by their generic names. If proprietary drugs have been used in the study, refer to these by their generic name,

mentioning the proprietary name and the name and location of the manufacturer in parentheses.

Wiley Author Resources

Manuscript Preparation Tips: Wiley has a range of resources for authors preparing manuscripts for submission available here. In particular, authors may benefit from referring to Wiley's best practice tips on Writing for Search Engine Optimization.

Editing, Translation, and Formatting Support: Wiley Editing Services can greatly improve the chances of a manuscript being accepted. Offering expert help in English language editing, translation, manuscript formatting, and figure preparation, Wiley Editing Services ensures that the manuscript is ready for submission.

Video Abstracts

A video abstract can be a quick way to make the message of your research accessible to a much larger audience. Wiley and its partner Research Square offer a service of professionally produced video abstracts, available to authors of articles accepted in this journal. You can learn more about it by clicking here. If you have any questions, please direct them to videoabstracts@wiley.com.

5. EDITORIAL POLICIES AND ETHICAL CONSIDERATIONS

Peer Review and Acceptance

The acceptance criteria for all papers are the quality and originality of the research and its significance to journal readership. Papers will only be sent to review if the Editors determine that the paper meets the appropriate quality and relevance requirements.

Except where otherwise stated, manuscripts are single-blind peer reviewed. Wiley's policy on the confidentiality of the review process is available here.

Data Sharing and Data Accessibility

The journal encourages authors to share the data and other artefacts supporting the results in the paper by archiving it in an appropriate public repository. Authors should include a data accessibility statement, including a link to the repository they have used, in order that this statement can be published alongside their paper.

Human Studies and Subjects

For manuscripts reporting medical studies that involve human participants, a statement identifying the ethics committee that approved the study and confirmation that the study conforms to recognized standards is required, for example: Declaration of Helsinki; US Federal Policy for the Protection of Human Subjects; or European Medicines Agency Guidelines for Good Clinical PracticeUS Federal Policy for the Protection of Human Subjects;. It should also state clearly in the text that all persons gave their informed consent prior to their inclusion in the study.

Patient anonymity should be preserved. Photographs need to be cropped sufficiently to prevent human subjects being recognized (an eye bar must not be used because of insufficient deidentification). Images and information from individual participants will only be published where the authors have obtained the individual's free prior informed consent. Authors do not need to provide a copy of the consent form to the publisher; however, in signing the author license to publish, authors are required to confirm that consent has been obtained. Wiley has a standard patient consent form available for use.

Animal Studies

A statement indicating that the protocol and procedures employed were ethically reviewed and approved, as well as the name of the body giving approval, must be included in the Methods section of the manuscript. Authors are encouraged to adhere to animal research reporting standards, for example the ARRIVE guidelines for reporting study design and statistical analysis; experimental procedures; experimental animals and housing and husbandry. Authors should also state whether experiments were performed in accordance with relevant institutional and national guidelines for the care and use of laboratory animals:

- US authors should cite compliance with the US National Research Council's Guide for the Care and Use of Laboratory Animals, the US Public Health Service's Policy on Humane Care and Use of Laboratory Animals, and Guide for the Care and Use of Laboratory Animals.
- UK authors should conform to UK legislation under the Animals (Scientific Procedures) Act 1986 Amendment Regulations (SI 2012/3039).
- European authors outside the UK should conform to Directive 2010/63/EU.

Clinical Trial Registration

The journal requires that clinical trials are prospectively registered in a publicly accessible database and clinical trial registration numbers are included in all papers that report their results. Authors are asked to include the name of the trial register and the clinical trial registration number at the end of the Abstract. If the trial is not registered, or was registered retrospectively, the reasons for this should be explained.

Research Reporting Guidelines

Accurate and complete reporting enables readers to fully appraise research, replicate it, and use it. Authors are encouraged to adhere to recognized research reporting standards. The EQUATOR Network collects more than 370 reporting guidelines for many study types, including for:

- Randomized trials: CONSORT
- Observational studies: STROBE
- Systematic reviews: PRISMA
- Case reports: CARE
- Qualitative research: SRQR
- Diagnostic / prognostic studies: STARD
- Quality improvement studies: SQUIRE
- Animal pre-clinical studies: ARRIVE
- Study protocols: SPIRIT
- Clinical practice guidelines: AGREE

We also encourage authors to refer to and follow guidelines from:

- Future of Research Communications and e-Scholarship (FORCE11)
- National Research Council's Institute for Laboratory Animal Research guidelines
- The Gold Standard Publication Checklist from Hooijmans and colleagues
- Minimum Information Guidelines from Diverse Bioscience Communities (MIBBI) website
- FAIRsharing website

Species Names

Upon its first use in the title, abstract, and text, the common name of a species should be followed by the scientific name (genus, species, and authority) in parentheses. For well-known species, however, scientific names may be omitted from article titles. If no common name exists in English, only the scientific name should be used.

Gene Names and Symbol

Standard nomenclature format must be used according to the organisms discussed. Reference sites by organism include:

- http://www.genenames.org (humans, non-human primates, domestic species)
- http://www.informatics.jax.org/mgihome//nomen/strains.shtml (mice, rats)
- http://www.xenbase.org (Xenopus)
- http://zfin.org (zebrafish)
- http://www.echinobase.org (echinoderms)
- http://flybase.org/(fruitflies)
- http://www.wormbase.org/

Sequence Data

Nucleotide sequence data can be submitted in electronic form to any of the three major collaborative databases: DDBJ, EMBL, or GenBank. It is only necessary to submit to one database as data are exchanged between DDBJ, EMBL, and GenBank on a daily basis. The suggested wording for referring to accession-number information is: 'These sequence data have been submitted to the DDBJ/EMBL/GenBank databases under accession number U12345'. Addresses are as follows:

- DNA Data Bank of Japan (DDBJ): www.ddbj.nig.ac.jp
- EMBL Nucleotide Archive: ebi.ac.uk/ena
- GenBank: www.ncbi.nlm.nih.gov/genbank

Protein sequence data should be submitted to either of the following repositories:

- Protein Information Resource (PIR): pir.georgetown.edu.
- SWISS-PROT: expasy.ch/sprot/sprot-top

Structural Data

For papers describing structural data, atomic coordinates and the associated experimental data should be deposited in the appropriate databank (see below). Please note that the data in databanks must be released, at the latest, upon publication of the article. We trust in the cooperation of our authors to ensure that atomic coordinates and experimental data are released on time.

- Organic and organometallic compounds: Crystallographic data should not be sent as Supporting Information, but should be deposited with the Cambridge Crystallographic
 Data
 Centre (CCDC) at ccdc.cam.ac.uk/services/structure%5Fdeposit.
- Inorganic compounds: *Fachinformationszentrum Karlsruhe* (FIZ; fiz-karlsruhe.de).
- Proteins and nucleic acids: Protein Data Bank (rcsb.org/pdb).
- NMR spectroscopy data: *BioMagResBank* (bmrb.wisc.edu).

Conflict of Interest

The journal requires that all authors disclose any potential sources of conflict of interest. Any interest or relationship, financial or otherwise that might be perceived as influencing an author's objectivity is considered a potential source of conflict of interest. These must be disclosed when directly relevant or directly related to the work that the authors describe in their manuscript. Potential sources of conflict of interest include, but are not limited to: patent or stock ownership, membership of a company board of directors, membership of an advisory board or committee for a company, and consultancy for or receipt of speaker's fees from a company. The existence of a conflict of interest does not preclude publication. If the authors have no conflict of interest to declare, they must also state this at submission. It is the responsibility of the corresponding author to review this policy with all authors and collectively to disclose with the submission ALL pertinent commercial and other relationships.

Funding

Authors should list all funding sources in the Acknowledgments section. Authors are responsible for the accuracy of their funder designation. If in doubt, please check the Open Funder Registry for the correct nomenclature: www.crossref.org/services/funder-registry.

Authorship

The list of authors should accurately illustrate who contributed to the work and how. All those listed as authors should qualify for authorship according to the following criteria:

1. Have made substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data;

- 2. Been involved in drafting the manuscript or revising it critically for important intellectual content;
- 3. Given final approval of the version to be published. Each author should have participated sufficiently in the work to take public responsibility for appropriate portions of the content; and
- 4. Agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Contributions from anyone who does not meet the criteria for authorship should be listed, with permission from the contributor, in an Acknowledgments section (for example, to recognize contributions from people who provided technical help, collation of data, writing assistance, acquisition of funding, or a department chairperson who provided general support). Prior to submitting the article all authors should agree on the order in which their names will be listed in the manuscript.

Additional Authorship Options

Joint first or senior authorship: In the case of joint first authorship, a footnote should be added to the author listing, e.g. 'X and Y should be considered joint first author' or 'X and Y should be considered joint senior author.'

Publication Ethics

This journal is a member of the Committee on Publication Ethics (COPE). Read Wiley's Top 10 Publishing Ethics Tips for Authors here. Wiley's Publication Ethics Guidelines can be found here.

ERRATA

Giroto, Alan Brunholi. Adição de proteína plasmática A associada à prenhez (PAPP-A) durante a maturação *in vitro* aumenta o IGF-1 biodisponível e modula o perfil transcricional de complexos cumulus-oócitos e embriões bovinos. 2018. 60 p. Dissertação de Mestrado em Ciência Animal, Programa de Pós-Graduação em Ciência Animal, Universidade do Oeste Paulista – UNOESTE.

Página 14, linhas 16 a 19 (Grants)

Onde se lê:

São Paulo Research Foundation (FAPESP; grant numbers: 2012/50533-2; 2013/11480-3; 2015/04505-5 and 2016/22812-5).

National Council for Scientific and Technological Development (CNPq; grant number: 403063/2016-7).

Leia-se:

Coordination for the Improvement of Higher Education Personnel (CAPES).

São Paulo Research Foundation (FAPESP; grant numbers: 2013/11480-3 and 2016/22812-5).

National Council for Scientific and Technological Development (CNPq; grant number: 403063/2016-7).