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RESUMO 

 

Uma abordagem de aprendizagem de máquina para o mapeamento da vegetação 
florestal em zonas ripárias em um ambiente de bioma atlântico usando imagens 
sentinel-2 

 
As zonas ripárias consistem em importantes regiões ambientais, especificamente para 
a manutenção da qualidade dos recursos hídricos. Mapear com precisão a vegetação 
florestal nas zonas ripárias é uma questão importante, uma vez que pode fornecer 
informações sobre vários processos de superfície que ocorrem nessas áreas. 
Recentemente, algoritmos de aprendizado de máquina ganharam atenção como uma 
abordagem inovadora para extrair informações de imagens de sensoriamento remoto, 
inclusive para apoiar a tarefa de mapeamento de áreas de vegetação. No entanto, 
estudos relacionados à aplicação de aprendizado de máquina para mapeamento da 
vegetação florestal exclusivamente nas zonas ripárias ainda são limitados. Portanto, 
este artigo apresenta uma estrutura para mapeamento da vegetação florestal em 
zonas ripárias baseadas com modelos de aprendizado de máquina usando imagens 
multiespectrais orbitais. Um total de 14 imagens Sentinel-2 registradas ao longo do 
ano, cobrindo uma grande zona ripária de uma porção de um rio largo na região do 
Pontal do Paranapanema, estado de São Paulo, Brasil, foi adotado como o conjunto 
de dados. Esta área é composta principalmente por vegetação do Bioma Atlântico, e 
está próxima ao último fragmento primário de seu bioma, sendo uma importante região 
do bioma do ponto de vista do planejamento ambiental. Comparamos o desempenho 
de vários algoritmos de aprendizado de máquina, como Decision Tree (DT), Random 
Forest (RF), Support Vector Machine (SVM) e Normal Bayes (NB). Avaliamos 
diferentes datas e locais com todos os modelos. Nossos resultados demonstraram 
que o algoritmo DT tem, de maneira geral, a maior precisão nesta tarefa. O algoritmo 
DT também apresentou alta precisão quando aplicado em datas diferentes e na zona 
ribeirinha de outro rio. Concluímos que a abordagem proposta é adequada para 
mapear com precisão a vegetação florestal nas zonas ripárias, incluindo o contexto 
temporal. 
 
Palavras-chave: Aprendizagem de máquina. Decision tree. Imagens sentinela. 
Classificação de imagens. Mapeamento da vegetação florestal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ABSTRACT 

 

A machine learning approach for mapping forest vegetation in riparian zones in 

an atlantic biome environment using sentinel-2 imagery 

 
Riparian zones consist of important environmental regions, specifically to maintain the 
quality of water resources. Accurately mapping forest vegetation in riparian zones is 
an important issue, since it may provide information about numerous surface 
processes that occur in these areas. Recently, machine learning algorithms have 
gained attention as an innovative approach to extract information from remote sensing 
imagery, including to support the mapping task of vegetation areas. Nonetheless, 
studies related to machine learning application for forest vegetation mapping in the 
riparian zones exclusively is still limited. Therefore, this paper presents a framework 
for forest vegetation mapping in riparian zones based on machine learning models 
using orbital multispectral images. A total of 14 Sentinel-2 images registered 
throughout the year, covering a large riparian zone of a portion of a wide river in the 
Pontal do Paranapanema region, São Paulo state, Brazil, was adopted as the dataset. 
This area is mainly composed of the Atlantic Biome vegetation, and it is near to the 
last primary fragment of its biome, being an important region from the environmental 
planning point of view. We compared the performance of multiple machine learning 
algorithms like decision tree (DT), random forest (RF), support vector machine (SVM), 
and normal Bayes (NB). We evaluated different dates and locations with all models. 
Our results demonstrated that the DT learner has, overall, the highest accuracy in this 
task. The DT algorithm also showed high accuracy when applied on different dates 
and in the riparian zone of another river. We conclude that the proposed approach is 
appropriated to accurately map forest vegetation in riparian zones, including temporal 
context. 
 
Keywords: Machine learning. Decision tree. Sentinel images. Image classification. 
Forest vegetation mapping. 
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1 CONSIDERAÇÕES INICIAIS 

 

 

Este documento está organizado em três seções. A primeira seção consiste 

no contexto geral da presente pesquisa que é promovida pela Coordenação de 

Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e desenvolvida no Programa 

de Pós-Graduação em Meio Ambiente e Desenvolvimento Regional (PPGMADRE) da 

Universidade do Oeste Paulista (UNOESTE). A segunda seção consiste em um 

manuscrito, que discute a capacidade de mapear a vegetação florestal em zonas 

ripárias com base em imagens multiespectrais Sentinel-2 processadas por algoritmos 

de aprendizado de máquina. A terceira seção apresenta considerações sobre o 

desenvolvimento deste trabalho, incluindo a publicação durante o período de sua 

execução. 

O PPGMADRE é composto por duas linhas de pesquisa: Avaliação e análise 

de impactos ambientais; e Planejamento ambiental e desenvolvimento regional, que 

se enquadra no presente trabalho. O programa é interdisciplinar e conecta as 

questões ambientais ao desenvolvimento regional. As linhas de pesquisa atuam em 

um Programa de Pesquisa Interdisciplinar denominado PROINTER. 

Este relatório de defesa de mestrado contempla uma discussão relevante 

sobre a capacidade dos algoritmos de aprendizado de máquina em identificar 

vegetação florestal em zonas ripárias em uma área do Pontal do Paranapanema, 

região oeste do estado de São Paulo. Adotamos os principais rios da região para os 

testes: Rio Paraná e Rio Paranapanema. Isso atesta a proposta do PPGMADRE de 

discutir o processo de desenvolvimento regional frente às questões ambientais. 

 

 

 

 

 

 

 

 

 



  13 
 

2 MANUSCRITO 

 

UMA ABORDAGEM DE APRENDIZAGEM DE MÁQUINA PARA O MAPEAMENTO DA 

VEGETAÇÃO FLORESTAL EM ZONAS RIPÁRIAS EM UM AMBIENTE DE BIOMA ATLÂNTICO 

USANDO IMAGENS SENTINEL-2 

 
Resumo: 

As zonas ripárias consistem em importantes regiões ambientais, especificamente para a manutenção 

da qualidade dos recursos hídricos. Mapear com precisão a vegetação florestal nas zonas ripárias é 

uma questão importante, uma vez que pode fornecer informações sobre vários processos de superfície 

que ocorrem nessas áreas. Recentemente, algoritmos de aprendizado de máquina ganharam atenção 

como uma abordagem inovadora para extrair informações de imagens de sensoriamento remoto, 

inclusive para apoiar a tarefa de mapeamento de áreas de vegetação. No entanto, estudos relacionados 

à aplicação de aprendizado de máquina para mapeamento da vegetação florestal exclusivamente nas 

zonas ripárias ainda são limitados. Portanto, este artigo apresenta uma estrutura para mapeamento da 

vegetação florestal em zonas ripárias baseadas com modelos de aprendizado de máquina usando 

imagens multiespectrais orbitais. Um total de 14 imagens Sentinel-2 registradas ao longo do ano, 

cobrindo uma grande zona ripária de uma porção de um rio largo na região do Pontal do 

Paranapanema, estado de São Paulo, Brasil, foi adotado como o conjunto de dados. Esta área é 

composta principalmente por vegetação do Bioma Atlântico, e está próxima ao último fragmento 

primário de seu bioma, sendo uma importante região do bioma do ponto de vista do planejamento 

ambiental. Comparamos o desempenho de vários algoritmos de aprendizado de máquina, como 

Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM) e Normal Bayes (NB). 

Avaliamos diferentes datas e locais com todos os modelos. Nossos resultados demonstraram que o 

algoritmo DT tem, de maneira geral, a maior precisão nesta tarefa. O algoritmo DT também apresentou 

alta precisão quando aplicado em datas diferentes e na zona ribeirinha de outro rio. Concluímos que a 

abordagem proposta é adequada para mapear com precisão a vegetação florestal nas zonas ripárias, 

incluindo o contexto temporal. 

 

Palavras-chave: machine learning; decision tree; Imagens sentinel; classificação de imagens, 

mapeamento da vegetação florestal. 

 

Abstract:  

Riparian zones consist of important environmental regions, specifically to maintain the quality of water 

resources. Accurately mapping forest vegetation in riparian zones is an important issue, since it may 

provide information about numerous surface processes that occur in these areas. Recently, machine 

learning algorithms have gained attention as an innovative approach to extract information from remote 

sensing imagery, including to support the mapping task of vegetation areas. Nonetheless, studies 

related to machine learning application for forest vegetation mapping in the riparian zones exclusively 

is still limited. Therefore, this paper presents a framework for forest vegetation mapping in riparian zones 

based on machine learning models using orbital multispectral images. A total of 14 Sentinel-2 images 

registered throughout the year, covering a large riparian zone of a portion of a wide river in the Pontal 

do Paranapanema region, São Paulo state, Brazil, was adopted as the dataset. This area is mainly 

composed of the Atlantic Biome vegetation, and it is near to the last primary fragment of its biome, being 

an important region from the environmental planning point of view. We compared the performance of 

multiple machine learning algorithms like decision tree (DT), random forest (RF), support vector machine 

(SVM), and normal Bayes (NB). We evaluated different dates and locations with all models. Our results 

demonstrated that the DT learner has, overall, the highest accuracy in this task. The DT algorithm also 

showed high accuracy when applied on different dates and in the riparian zone of another river. We 

conclude that the proposed approach is appropriated to accurately map forest vegetation in riparian 

zones, including temporal context. 
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Keywords: machine learning; decision tree; Sentinel images; image classification, forest vegetation 

mapping. 

 

Introduction 

 Monitoring the spatial-temporal dynamics of land cover and use in riparian 

zones is essential to understand the numerous surface processes that can occur in 

these areas (Midekisa et al, 2017). Deforestation and inadequate use are some of the 

most notorious problems in many environmentally fragile riparian zones. These regions 

have an important role in environmental conservation, providing multiple ecosystem 

services (Chignell et al, 2017). With the increasing loss worldwide of wetlands and 

riparian areas (Chignell et al, 2017), an accurate mapping of forest vegetation is 

required to define strategies for both monitoring and conservation. Fine-scale mapping 

of forest vegetation in riparian zones may provide information to support different tasks, 

such as maintaining the quality of water resources. Riparian zones offer an ecological 

function essential to wildlife and human communities that are gathered around its 

proximities. In this regard, investigating methods that provide an accurate description 

of these forest fragments is a relevant scientific task. 

Satellite imagery consists of a substantial source of information to map forests 

since they regularly register a wide geographic area and are particularly suited to 

support the changing detection tasks (Lawley et al, 2016). Moreover, satellite imagery 

is a potential solution for mapping land use at several cartographic scales (Ba et al, 

2019). An important orbital platform for monitoring these areas is the Sentinel-2. 

Offering multispectral images with 10–60 m spatial, 13 spectral bands, and 5-day 

temporal resolutions, Sentinel-2 images opened many opportunities to investigate the 

fine-scale mapping of vegetation, including inside the riparian zones. However, digital 

image classification is a task whose accuracy strongly depends on the availability of 

data and on the applied method used to perform it (Jensen, 2014). Image classification 

tasks were initially performed with conventional supervised methods like maximum 

likelihood, minimum distance, Mahalanobis distance, and others, as well as with 

unsupervised methods like K-means and isodatdo a (Richards, 2013). Nonetheless, 

new approaches are required to aid this issue, especially because of the technological 

advances that permitted the construction of sensors able to acquire images with high 

spatial-spectral-temporal resolutions, thus, producing a large amount of data to be 

analyzed.  
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Machine learning (ML) techniques are a current and promising alternative to 

process remote sensing data (Ball et al, 2017) and are applied in many data processing 

and analysis tasks (Cheng et al, 2020). These learners can be used to model different 

sets-of-data using a robust approach (Ball et al, 2017; Mitchell, 1997). Moreover, ML 

methods allow establishing non-parametric and nonlinear relationships between the 

independent variables and dependent variables (usually the target), resulting in overall 

better performance when compared to the conventional linear models (Feng et al, 

2019). Regardless, as no universal learner exists, multiple tests are needed for 

different types of applications. 

Several approaches have been developed with ML and multispectral imagery 

for mapping the spatial distribution of vegetation areas. A study (De Luca et al, 2019) 

investigated the performance of the random forest (RF) and support vector machine 

(SVM) algorithms for high-resolution multispectral imagery classification. These 

images were acquired with embedded sensors in an Unmanned Aerial Vehicle (UAV). 

The reliability of ML learners was also verified in the mapping task of invasive trees in 

riparian zones, also with UAV-imagery (Michez et al, 2016). Adopting visible and near-

infrared data, spectral and texture features were computed at various scales (10, 30, 

45, 60), and the most relevant variable (or combination of variables) was identified with 

a supervised classification model based on the RF algorithm. 

A recent study (Hengl et al, 2018) pointed out that ML algorithms can be used 

for mapping vegetation areas, and they are especially applicable when training data 

consist of a large number of observations and covariates. More recently, another 

research (MacIntyre et al, 2020) evaluated several multi-temporal Sentinel-2 images, 

making combinations of spectral bands and applying principal component analysis and 

tasseled cap transformations. They used it as input to four ML techniques (SVM, 

nearest neighbor—KNN, RF, and classification trees—CT), aiming to separate 

vegetation species. The best results were returned by SVM, but the authors pointed 

out that further work is needed to determine whether these results are replicable in 

other vegetation types and regions. Combinations of spectral bands from Sentinel-2 

data were also tested (Persson et al, 2018) to evaluate the performance of the RF for 

mapping tree species on different dates, and obtained an averaged accuracy of 80%. 

Although remote sensing images have proved their potential to support mapping 

tasks into different contexts, like land use and land cover, its application for forest 

vegetation mapping in the riparian zones exclusively is still limited. Up to our 
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knowledge, few studies were conducted (De Luca et al, 2019; Michez et al, 2016) in 

this manner, and they were mainly with UAV-imagery. UAV-imagery provides an 

important data source for many applications, like high-detailed vegetation maps, but it 

is worth mentioning that these platforms may not be attractive when wide geographic 

areas require to be mapped such as riparian zones in many tropical countries. 

The use of machine learning methods with orbital data, like the free-available 

satellite images from Sentinel-2, can be a promissory strategy to map-wide areas using 

a low-cost approach. Sentinel-2 data has been evaluated with ML algorithms for 

mapping different types of vegetation (Cai et al, 2020; Feng et al, 2019) as other targets 

(Balcik et al, 2020), and it was considered efficient in these studies. But, the knowledge 

about the capacity of current ML models to identify the spatial distribution of forest 

vegetation in riparian zones based on medium spatial resolution imagery is limited yet. 

A recent study (MacIntyre et al, 2020) used Sentinel 2 imagery to map vegetation, but 

it is unclear whether these results can be replicated into other riparian zones. 

To fulfill the aforementioned gap, we propose an easily reproducible framework 

to map forest vegetation in riparian zones, based on Sentinel-2 (MSI) multispectral 

images and processed by ML algorithms. We hypothesize that some machine learning 

algorithms may be more appropriate than others to potentially map forest-type in those 

areas with interference from seasonal changes. We then verified the -generalization 

capability of all trained models using images from different dates and geographic 

areas. The traditional classification and segmentation methods may not present a 

consistent accuracy or even provide the same robustness as a machine learning 

evaluation. In this sense, when monitoring these areas alongside different dates, 

governmental technical-agencies, and entities responsible for the forest management 

may adopt the proposed approach. 

 

Materials and Method 

 Our method was divided into four main stages (Figure 1). Initially, we performed 

the organization of a database composed of 14 multispectral Sentinel-2 imagery, 

acquired alongside a one-year-period, for the area of interest. These images were 

preprocessed to convert their original value into surface reflectance values (MacIntyre 

et al, 2020). 
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Figure 1. Workflow describing the main stages of the proposed method. 

 

 We defined as a study area the riparian zone within 1 km distance from the 

Paraná river margin (Figure 2), and for the last step the riparian zone selected was 

within 1 km of another river, known as the Paranapanema. We manually labeled the 

features (forest and non-forest) in a geographical information system (GIS) 

environment and separated the data in both training and testing sets. We performed 

the detection of forest vegetation adopting different algorithms. The performance of the 

learners was compared against one another using classification evaluation metrics. 
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Figure 2. Study area and an example of 1 km of the riparian zone. 

 

Study Area 

 Our study area was the riparian zone of the Paraná River (Figure 2) located in 

the state of São Paulo, Brazil. This region is known for the presence of one of the last 

original fragments of the Atlantic Biome in Brazil. This riparian zone has an area of 

152.91 km² and 468.46 km of the perimeter, and the Paraná River is considered the 

most important river from this geographic region, dividing the states of São Paulo and 

Mato Grosso do Sul. The riparian zone is formed by both Cerrado (Brazilian Savanna) 

and Atlantic Forest biomes. This area is representative of most large rivers in our 

ecosystem, as it still possesses natural vegetation alongside deforestation, agricultural 

and urban environments within its area. 

 

Image Preprocessing and Labeled Features 

 Our experiment considered a total of 14 Sentinel-2 images (Table 1). All scenes 

were available with little or without cloud interference alongside the riparian zone. Also, 

most of the cloud-cover was formed by thin clouds, which although may impact the 

algorithm's performance, served as an additional challenge for the algorithm. A total of 
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13 Sentinel-2 images were acquired during June 2018 and June 2019 (one per month), 

and a scene from June 2020 was used to test the performance of the algorithms in a 

different period. Therefore, we worked with images representing all seasons of the year 

(summer, winter, autumn, and spring). Each scene was downloaded from the United 

States Geological Survey (USGS) EarthExplorer Platform. Sentinel-2 images are 

collected by its MSI sensor and available in Digital Number (DN), in 12-bit radiometric 

resolution, in both 10, 20, and 60 m resolutions. They were projected to the WGS-84 

UTM 22 S zone system. 

 

Table 1. Information regarding the 14 Sentinel-2 images used in this study. 

Date Season in the South Hemisphere 

20 June 2018 Autumn 

20 July 2018 Winter 

29 August 2018 Winter 

23 September 2018 Spring 

28 October 2018 Spring 

27 November 2018 Spring 

02 December 2018 Spring 

31 January 2019 Summer 

10 February 2019 Summer 

22 March 2019 Autumn 

26 April 2019 Autumn 

21 May 2019 Autumn 

15 June 2019 Autumn 

24 June 2020 Winter 

 

 

For all images, we performed the radiometric correction using the SNAP 7.1.0 

software with the Sen2Cor Toolbox. It was necessary to minimize the atmospheric 

influences, and, for that, we adopted the recommendations listed in the Sentinel-2 User 

Handbook (ESA, 2015). The SNAP tool finds the parameters for both radiometric and 

atmospheric corrections automatically. These values are calculated by default when 

the software reads the metadata file of each scene. In this regard, aerosol values 

corresponding to rural areas were adopted; and atmospheric conditions were defined 
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to coincide with the time that the image was recorded. Ozone content in the 

atmosphere was also automatically defined. A correction using the Cirrus band (Band 

10) was not performed since is not available for the 10 m bands at the moment (ESA, 

2015). We used the DSM (Digital Surface Model) option input for terrain correction. 

The remaining parameters were left at their respective default values. 

For our experimental setup, we labeled the forest-type data as training and 

testing samples using a GIS tool. The collection of the labeled information was 

performed with help of a specialist in the area, alongside additional high-resolution 

imagery from other datasets and imaging (both orbital and aerial) performed within the 

riparian zone in the last years. Regarding different types of forest vegetation present 

in the riparian zone, we considered only the fragments formed by forest physiognomies 

from the Atlantic Biome and, in fewer proportions, Brazillian Savanna, commonly 

encountered in the area, and associated with wetlands. In this aspect, since this type 

of forest offers more protection to these fragile ecosystems than the arbustive or 

grassland-types, it was identified during the labeling process and incorporated in the 

analysis. 

A total of 855 features (polygons) of forest-type vegetation and 855 features of 

non-forest vegetation (e.g., water, soil, grass, and other land covers) were annotated 

on Sentinel-2 images, resulting in a total of 1710 polygons with different sizes, 

occupying almost 3,322.3 ha. Details regarding these samples and their spatial 

distribution are presented in Table 2 and Figure 3 below. Although, by the proximity 

between polygons, it may seem that some of which are present in both subsets. 

However, this occurred only during the representation of small polygons in the figure 

scale, as both training and testing sets were composed of entirely different features. 

To investigate the performance of the machine learning algorithms in detecting forest 

vegetation, we used 50% of the dataset (polygon features) for training and 50% for 

testing the algorithms. 

 

Table 2. Description of the training, validation, and testing sets of the dataset. 

Dataset Number of Samples  

(Features - Polygon) 

Area (ha) Number of Pixels 

Training (Forest) 430 839.00 8,390,000 

Training (Non-Forest) 425 679.05 6,790,500 

Testing (Forest) 447 893.40 8,934,000 

Testing (Non-Forest) 408 910.85 9,108,500 
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Figure 3. Spatial distribution of the complete dataset used in the Parana river area exemplifying the 
different classes. 

 

 The sample size and quality of training data have generally had a large impact 

on the classification accuracy (Maxwell et al, 2018). In this regard, we divided the 

dataset while ensuring that both training and testing sets contained similar sampling 

patterns, being representatives of all conditions observed in the area during labeling. 

This division was applied with the assistance of a widget incorporated in the Orange 

open-source software, and we integrated it with the sampling extraction method in the 

QGIS open-source software environment. 

 

Machine Learning Algorithms 

The open-source software Orfeo Toolbox 7.1.0 was used to apply and evaluate 

the performance of different ML models in classifying forest vegetation in the riparian 

zones using Sentinel-2 multispectral images. As stated, our dataset was composed of 

two classes: forest vegetation and non-forest vegetation, and it was used both training 

and testing the algorithms to ensure an adequate comparison among algorithms. We 

conducted a comparative study using four machine learning algorithms, including 

random forest (Breiman, 2001), decision tree (Breiman, 1984), support vector machine 

(Mountrakis et al, 2011), and normal-gaussian Bayes (Mitchell, 1997). 

The training and testing datasets were divided in the proportion of 50:50. The 

training set was then used to train and set up the hyperparameters of the chosen 
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algorithms. In this sense, we divided the training set with the holdout method, using 

10% of its data to validate it. After defining the best parameters for each model, we 

used the testing-set containing 50% of the original data, with samples not used during 

the training and validation process, to evaluate the real performance of our models. As 

explained by (Xu and Goodacre, 2018), the even division between samples is 

necessary to have a good balance between both sets. This ensures a reliable 

estimation of the models’ performance, as the imbalance between datasets may harm 

the predictions. 

The fine-tuning process of all the algorithms was performed until no 

improvements in the F1-measure value were identified. The same dataset (training and 

testing) was adopted for all algorithms. The final configuration of the algorithms is in 

Table 3. Once the hyperparameters of each algorithm were defined, the testing dataset 

was used to verify its real performance. Metrics like Global Accuracy, F1-measure, 

Precision, and Recall were then adopted to evaluate them. These metrics were 

calculated considering the classification results of all of the labeled pixels in the testing-

set. They also represent the average classification values between both classes. 

 

Table 3. ML algorithms adopted to classify forest vegetation in riparian zones. 

Algorithm Hyperparameters 

RF Maximum depth of the tree = 5 

Minimum number of samples in each node = 10 

Termination criteria for regression tree = 0 

Cluster possible values of a categorical variable into k <= clusters to find a 

suboptimal split = 10 

Size of the randomly selected subset of features at each tree node = 0 

Maximum number of trees in the forest = 100 

Sufficient accuracy = 0.01 

SVM SVM Kernel Type = Linear 

SVM Model Type = C support vector classification  

Cost parameter C = 1 

Cost parameter Nu = 0.5 

Parameters optimization = Off 

Probability estimation = Off 

DT Maximum depth of the tree = 10 

Minimum number of samples in each node = 10 

Termination criteria for regression tree = 0.01 

Cluster possible values of a categorical variable into k <= cat clusters to find a 

suboptimal split = 10 

NB The algorithm has no parameters for changing 
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Our experiment was set up to compare the performance of the machine learning 

models and determine the overall best classifier. This comparison was performed 

regarding only the spectral bands (blue, green, red, and near-infrared) from the 10 m 

spatial resolution images, as it provided more detailed samples. Additionally, we 

conducted tests to evaluate the generalization capability of all trained models using 

images from dates and geographic areas. The different proposed scenarios were 

related to a) evaluating different dates acquired during a one-year time interval (each 

image was evaluated individually by all of the machine learning models), and; b) 

applying the models in another riparian zone in an image from a different year of a 

different area; although from the same biome. Each image was then evaluated 

individually by all of the machine learning models. 

 

Results 

 Table 4 shows the performance of the machine learning algorithms in the 

proposed task regarding the multiple dates of analysis for the riparian zone of the 

Paraná River (Figure 2). As previously explained, all models were trained on 50% of 

the sampling data and tested with the remaining 50% for a total of 14 Sentinel-2 

imagery (Table 1) with the spectral bands’ number 2,3,4, and 8 (blue, green, red, and, 

near-infrared bands, respectively), with 10 m of spatial resolution. 
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Table 4. Performance evaluation applying the trained model on all dates with different models. 

Algorithm - Date Accuracy (%) F1-measure (%) Precision (%) Recall (%) Kappa (%) 

RF - June 2018 86.10 84.35 73.64 98.70 72.30 

RF - July 2018 86.10 84.35 73.64 98.70 72.30 

RF - August 2018 96.55 89.55 82.55 96.55 75.10 

RF - September 2018 97.07 90.74 84.41 97.07 75.70 

RF - October 2018 94.79 94.60 89.89 99.84 89.60 

RF - November 2018 93.01 92.63 86.39 99.83 86.00 

RF - December 2018 88.38 87.25 78.22 98.64 76.80 

RF - January 2019 56.29 38.67 27.10 67.44 13.40 

RF - February 2019 80.25 76.29 62.51 97.85 60.70 

RF - March 2019 92.92 93.92 95.69 90.87 85.80 

RF - April 2019 97.13 97.19 97.90 96.50 94.20 

RF - May 2019 86.28 85.39 78.86 93.10 72.60 

RF - June 2019 95.42 95.38 93.08 97.80 90.80 

RF - June 2020 67.48 58.22 44.57 83.91 35.50 

SVM - June 2018 90.38 89.62 81.76 99.16 80.80 

SVM - July 2018 88.02 82.77 77.52 88.02 81.55 

SVM - August 2018 85.25 81.67 78.10 85.25 80.77 

SVM - September 2018 86.39 84.59 73.48 99.65 72.90 

SVM - October 2018 96.79 96.76 94.19 99.46 93.60 

SVM - November 2018 93.60 93.46 89.89 97.32 87.20 

SVM - December 2018 91.89 91.70 88.18 95.52 83.80 

SVM - January 2019 84.61 83.21 75.03 93.39 69.30 

SVM - February 2019 80.93 78.30 67.68 92.89 62.00 

SVM - March 2019 91.27 91.74 95.32 88.41 82.50 

SVM - April 2019 95.81 95.90 96.46 95.35 91.60 

SVM - May 2019 93.03 92.87 89.37 96.66 86.10 

SVM - June 2019 95.87 95.92 95.50 96.33 91.70 

SVM - June 2020 82.94 80.08 67.47 98.48 66.00 

DT - June 2018 92.27 92.64 95.75 89.73 84.50 

DT - July 2018 94.83 94.81 92.91 96.79 89.70 

DT - August 2018 91.72 91.49 87.58 95.76 83.50 

DT - September 2018 92.41 92.09 86.84 98.02 84.90 

DT - October 2018 92.61 92.62 91.18 94.11 85.20 

DT - November 2018 89.25 89.22 87.49 91.02 78.50 

DT - December 2018 87.60 87.55 85.73 89.44 75.20 

DT - January 2019 46.20 45.70 44.53 46.93 -07.50 

DT - February 2019 80.78 81.17 81.50 80.84 61.50 

DT - March 2019 91.63 92.17 96.90 87.87 83.20 

DT - April 2019 95.74 95.91 98.29 93.65 91.50 

DT - May 2019 68.26 74.77 92.50 62.74 36.00 

DT - June 2019 97.61 97.66 97.87 97.44 95.20 

DT - June 2020 67.95 75.07 94.94 62.08 35.30 

NB - June 2018 96.74 96.71 94.45 99.09 93.50 

NB - July 2018 94.22 93.95 93.69 94.22 91.25 

NB - August 2018 95.58 94.90 94.22 95.58 92.58 

NB - September 2018 90.49 89.69 81.35 99.93 81.00 

NB - October 2018 78.95 81.24 89.67 74.26 57.70 

NB - November 2018 61.70 68.74 82.85 58.74 22.80 

NB - December 2018 70.93 75.41 87.70 66.14 41.50 

NB - January 2019 76.69 78.09 81.73 74.76 53.30 

NB - February 2019 80.75 82.58 89.77 76.46 61.40 

NB - March 2019 92.88 93.24 96.55 90.15 85.70 

NB - April 2019 96.30 96.42 97.99 94.91 92.60 

NB - May 2019 94.16 94.26 94.37 94.16 88.30 

NB - June 2019 97.62 97.66 98.04 97.29 95.20 

NB - June 2020 86.61 87.91 95.78 81.24 73.10 

 

 To help illustrate the performance of ML algorithms in multiple dates (Table 4), 

we organized a box-plot indicating the F1-measure and other evaluation metrics of the 
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applied models (Figure 4). Here, the overall results indicated that the performance of 

the algorithms, when considering all of the dates, were similar. However, DT 

outperformed slightly other ML models, since it returned the highest F1-measure value. 

The DT then is the most recommended approach in this regard. The NB model, 

however, may be useful since it is a simple model and does not require substantial 

processing costs. 

 

 

Figure 4. Box-plot representing the overall accuracies of the algorithms when considering multiple 
dates on its evaluation. 

 

Figure 5 presents the qualitative results obtained with each tested ML algorithm 

using the image of June 15th, 2019, since it returned the highest accuracy (F1-

measure upper to 95%) compared to other dates (Table 4). 
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Figure 5. Results of the image classifications of each algorithm. 

 

 Although the four evaluated ML algorithms (Figure 5) can be assumed with 

similar performance visually, the quantitative analysis (Table 4) has demonstrated that 

the best learners in terms of kappa value were DT, NB, SVM, and RF, respectively. 

We noted that DT and NB techniques presented the same kappa value (95.20; see 

Table 4), but the NB, in general, had a slight increase in the Recall value compared to 

the DT (see Figure 4), which means that NB classified some non-forest areas as forest 

more than the DT algorithm. In this regard, the DT learner, while returning similar 

evaluation metrics as the other algorithms, returned better quali-quantitative results. 

Considering a forest management perspective, the false-positives (i.e. non-vegetation 

classified as vegetation) are more harmful than false-negatives. 

 We verified that for some areas, the DT and RF algorithms were not affected by 

sparse vegetation characteristics (Figure 6) like the SVM and NB were (Figure 7). 

These areas present a higher contribution from soil brightness pixels and other types 

of vegetation covers that offer some potential challenges for the classification. 
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Figure 6. Examples of the classification of the DT and RF algorithms in an area of sparse vegetation. 

 

 

Figure 7. Examples of the classification of the SVM and NB algorithms in an area of sparse vegetation. 

 

 The algorithms also faced additional challenges in mapping forest vegetation in 

riparian zones, and negative examples are presented in Figure 8. This classification 

error possibly is due to the cloud cover interference that this part of the Sentinel-2 

scene presented. The algorithms classified part of the clouded area over the water-

body as vegetation. Nonetheless, the DT learner was still highly accurate in the 

proposed task when considering the land area contained within the riparian zone, as 

our training samples only considered these areas. Figure 9 shows a positive example 

in which the DT algorithm was successful in identifying forest vegetation in a complex 

environment. 
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Figure 8. Examples of the classification results obtained with the algorithms using the Sentinel-2 
image with the partially-cloudy area. 

 

 

Figure 9. Examples of the classification results obtained with the algorithms using the Sentinel-2 
image from without cloud cover. 

 

 Based on these observations (Figures 8 and 9) and the results of the 

quantitative approach (Table 4), the DT was defined as the overall best technique 

among the evaluated models. To verify the generalization capability of the ML 

techniques, we performed additional tests with different dates in another riparian zone, 
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but from the same biome. The generalization ability of a model refers to training it with 

images from a geographic area and testing its performance in other areas. This 

additional test was made with four algorithms (RF, SVM, DT, and NB). Therefore, the 

models, which were trained using images from the riparian zone of the Paraná River, 

were tested in the riparian zone located in the Paranapanema River. This river is 

located near one of the last largest fragments of primary vegetation from the Atlantic 

Biome, known as the Devil’s Mount. It is worth mentioning that we applied the four 

algorithms on two different dates in this area, considering the rainy summer and dry 

winter seasons. For that, we labeled a total of 147 features (polygons) representative 

of forest vegetation and 147 features of non-forest vegetation as data for testing the 

models, following the same criteria as the previous labeling. Table 5 shows the results, 

which returned high accuracies on all dates. Two representative dates of each year 

were considered in this analysis. 

 

Table 5. Performance evaluation of four algorithms applying the trained model on different dates in the 
Paranapanema River. 

Algorithm - Date Accuracy (%) F1-measure (%) Precision (%) Recall (%) Kappa 

RF - December 2018 96.12 97.65 96.71 98.61 86.50 

RF - June 2019 98.67 99.21 99.57 98.85 95.10 

SVM - December 2018 99.08 99.44 98.92 99.98 96.70 

SVM - June 2019 98.68 99.21 99.81 98.62 95.10 

DT - December 2018 95.65 97.42 98.43 96.43 83.60 

DT - June 2019 99.04 99.42 99.87 98.99 96.50 

NB - December 2018 94.39 96.71 98.88 94.63 77.70 

NB - June 2019 98.90 99.35 99.67 99.03 96.00 

 

 Considering the scene from December 2018, we verified that all algorithms 

present a decrease in performance in terms of kappa (Table 5). This is probably related 

to the cloud cover influence on this image, since, concerning June 2019, it presented 

3,57 more times cloud cover (Table 1). The DT was the best algorithm among the 

evaluated models in terms of F1-measure, proving its generalization capability. 

 

Discussion 

 The approach presented here is appropriated to map forest vegetation using 

satellite multispectral imagery of medium-spatial resolution. Our particular interest was 

to investigate the potential of machine learning algorithms and measure their variation 
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in performance when applied to Sentinel-2 images for this task in riparian zones. The 

main advantage of this procedure is that free-available orbital images are used as the 

dataset, consisting of a low-cost method to support different environmental tasks, like 

monitoring of landscapes and forest management. In this regard, environmental 

practices could benefit from it, and future researches could be guided properly in terms 

of data and temporal analysis. 

Studies (Ba et al, 2019; Persson et al, 2018) have shown that ML techniques 

are an efficient approach to map different land use and land cover classes, including 

forest vegetation, and our trials demonstrated that some algorithms can perform this 

task with higher accuracy than the others. The DT algorithm has been characterized 

as a simple and fast model for many applications in the remote sensing domain 

(Sharma and Kumar, 2016; Jadhav and Channe, 2016). It was already characterized 

as more accurate, has less error rate, and is easier to apply when compared to other 

known methods in similar research (Immitzer et al, 2016). In our investigation, the DT 

algorithm achieved satisfactory results both at different dates and locations. Visually, 

this algorithm returned better results than others, moreover in areas that were not 

sampled. It also returned some variation in its accuracy when regarding different dates, 

although fewer than most of the others (Figure 4).  

The performance of the machine learning algorithms in our research was similar 

to those encountered in other studies (MacIntyre et al, 2020; Brovelli et al, 2020; Haq 

et al, 2020). In subtropical forest areas, a study (Sothe et al, 2020) was able to obtain 

a kappa coefficient (k) of 0.74 for the RF algorithm using WorldView-2 imagery. The 

authors also improved their classification by adopting LiDAR data, resulting in metrics 

similar to ours. However, it should be highlighted that both WorldView-2 images and 

LiDAR surveying are expensive approaches, differently from our proposed method 

herein that is free. Others studies also presented high performances in separating 

forest areas from other types of land covers, like detecting natural forest in Sentinel-2 

images with the RF algorithm (Koskikala et al, 2020), and separating forest healthy 

vegetation from damaged vegetation using, in this approach, deep neural networks, 

and returning 92% accuracy (Hamdi et al, 2019). We can observe that, in our case of 

study, the obtained results are similar in terms of accuracy value, even though when a 

deep learning strategy is adopted, like in (Hamdi et al, 2019). 

The strategy of adopting images from different dates was also encountered in 

related studies (MacIntyre et al, 2020); Persson et al, 2018). The temporal resolution 



  31 
 

is important and has been regarded as a more relevant feature than the spectral and 

spatial resolution when considering vegetation classification tasks (Rapinel et al, 

2019). In a recent study (MacIntyre et al, 2020) the overall best accuracies were 

obtained during the winter season, something also observed in our approach. The 

winter period in the riparian region investigated presents less atmospheric interference 

than the other periods. However, the spectral behavior from the tree fragments may 

vary, as some species reduce the number of leaves during this season. Regardless, 

the main aspect remains the presence of cloud interference, and that may explain the 

differences in accuracy of other seasons (Table 4), such as summer, in which most of 

the images possess some sort of atmospheric interference. 

Regarding vegetation phenology, few studies, to the best of our knowledge, 

evaluated different subclasses of forest-type with multispectral medium-spatial 

resolution remote sensing imagery and machine learning algorithms. Recently, in 

(MacIntyre et al, 2020) the authors used multi-temporal Sentinel-2 images to capture 

the phenological differences between vegetation classes. This study implemented a 

60:40 division between training and testing samples and determined that the 

classification of different phenologies was better with the SVM (74% accuracy) and NN 

(72% accuracy) models, returning superior results when compared against other 

algorithms, like RF (65% accuracy). Nonetheless, it is still difficult to evaluate different 

phenologies in medium-spatial resolution imagery, and future research could 

investigate the performance of these methods to map subtypes of forest in riparian 

zones by implementing other types of data to feed their models. 

Another important observation to be made is related to the generalization 

capability of the machine learning algorithms. These algorithms, unlike other types of 

traditional classification models, such as Maximum Likelihood, can improve their 

performance and learning capability when considering more and different informative 

data for training (Ball et al, 2017; Mitchell, 1997). In this aspect, it is possible to adopt 

the models for different scenarios, providing that enough characteristics are available 

for learning during its training phase. In our study, by implementing a 50:50 division 

between both training and testing samples, we demonstrated that most of the 

algorithms returned satisfactory performances and that most of them can be applied 

for different seasons throughout the year. The results obtained in a different riparian 

zone (Table 5) help to demonstrate the applicability of these models. 
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In short, our model was trained with data from one riparian zone, related to the 

Paraná river, and was able to map the forest vegetation considering different 

conditions (dates and areas) in the riparian zone of another river, known as the 

Paranapanema. This last experiment showed that the DT model, as well as the others 

to some extent, can be applied to different sites. As shown in Table 5, the worst results 

obtained in this area occurred during the rainy season (which happens from December 

to January in this region). As previously explained, the reduction in these dates could 

be explained mainly because the rainy season impacts the spectral response of 

vegetation (Jensen, 2014), as well as promotes different atmospheric conditions that 

could also affect it such as the increase in cloud cover. 

In a general sense, the machine learning algorithms investigated in this study 

can be considered a robust approach to classify forest-areas in multispectral imagery 

across seasonal periods. As we only implemented images from the Sentinel-2 sensor, 

this approach is suitable for low-cost classification models that intend to monitor areas 

like the ones adopted here. Nonetheless, other types of data may help in improving 

the accuracy in dates that did not return similar accuracies (Table 4) as the remaining 

pattern from the rest of the year. One study (Koskikala et al, 2020) indicated that a 

combination of texture metrics from Sentinel-2, seasonality metrics from Landsat time-

series, and topography metrics from the SRTM Digital Elevation Model are important 

features to be incorporated and fed to these models, helping to improve their overall 

performances in closed canopy natural forest classification. 

 

Conclusions 

 Here, we evaluated the performance of multiple machine learning models for 

mapping forest vegetation in riparian zones using multispectral images collected by an 

orbital sensor, embedded in the Sentinel-2 platform. Our approach demonstrated that 

the DT algorithm presented better overall accuracy in the aforementioned challenge. 

However, all tested methods returned high accuracies, which could also be considered 

appropriate to perform this task. As a contribution, we concluded that the DT algorithm 

can be used in different images and geographic areas throughout the year, and this 

approach may be implemented into other forest vegetation mapping tasks. Our 

framework is appropriate to accurately map forest-type in riparian zones and future 

research may benefit from the information presented here. 
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3 CONSIDERAÇÕES FINAIS 

 

  

 O presente trabalho de mapeamento da vegetação florestal em zonas ripárias, 

teve o resultado científico do manuscrito intitulado “Uma Abordagem de Aprendizado 

de Máquina para Mapear a Vegetação Florestal em Zonas Ripárias em um Ambiente 

do Bioma Atlântico usando Imagens Sentinel-2”. O manuscrito foi publicado em uma 

revista científica de impacto: Remote Sensing, com 4.509 de Fator de Impacto, no 

volume 12 em dezembro de 2020. 

A contribuição deste estudo é relevante para o futuro manejo florestal, pois as 

zonas ripárias apresentam muitos elementos que auxiliam no equilíbrio ambiental, 

entre eles a vegetação arbórea. As zonas ripárias são as interfaces entre os 

ecossistemas terrestres e aquáticos, não são facilmente delineadas, mas são 

compostas por mosaicos de formas de relevo, comunidades e ambientes dentro da 

paisagem maior (Gregory et al, 1991). 

No Brasil, este estudo pode contribuir para projetos de restauração de Áreas 

de Preservação Permanente (APP) instituídas pelo Novo Código Florestal (Lei nº 

12.651). Uma perspectiva do ecossistema das zonas ripárias fornece uma base 

ecológica rigorosa para identificar os objetivos do manejo ripário, avaliar as práticas 

atuais de uso da terra e desenvolver alternativas de recursos futuros (Gregory et al, 

1991). 
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RELATÓRIO TÉCNICO 

 

 Este estudo corresponde a dissertação de mestrado desenvolvida no Programa 

de Pós Graduação em Meio Ambiente e Desenvolvimento Regional (PPGMADRE) na 

Universidade do Oeste Paulista (UNOESTE). O projeto foi financiado pela 

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).  

 O estudo apresenta uma discussão sobre a capacidade de algoritmos de 

aprendizado de máquina em identificar vegetação florestal em zonas ripárias com 

imagens Sentinel-2. No Brasil, a vegetação próxima aos corpos de água é conhecida 

como Área de Preservação Permanente (APP) e é estabelecida pelo Novo Código 

Florestal - Lei n° 12.651, de 25 de maio de 2012. Em outros países não há leis que 

determinam as APPs, portanto, este estudo adotou o termo zonas ripárias.  

Os testes foram realizados em dois rios de destaque na área do Pontal do 

Paranapanema. Foram utilizados quatro algoritmos de aprendizado de máquina: 

Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), e Normal 

Bayes (NB) a fim de verificar o algoritmo de melhor desempenho. Os testes foram 

realizados no software Orfeo Toolbox 7.1.0 e foram utilizadas catorze imagens 

Sentinel-2. Como contribuição complementar este estudo apresenta o impacto da 

resolução temporal no desempenho dos algoritmos, além da aplicação dos modelos 

gerados em outra área. 

 As zonas ripárias são importantes para a manutenção da paisagem, 

conservação dos corpos de água e da biodiversidade. A estrutura apresentada é 

apropriada para mapear com precisão a vegetação florestal em zonas ripárias e 

pesquisas futuras podem se beneficiar dos resultados apresentados neste estudo. As 

técnicas de aprendizado de máquina são vantajosas para estudos de recuperação 

ambiental em zonas ripárias, pois otimizam o tempo de processamento e diagnóstico 

de uma área específica.   

 

 


