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1 CONSIDERAÇÕES INICIAIS 

 

 

Este documento está organizado em três seções. A primeira seção consiste 

no contexto geral da presente pesquisa que é promovida pela Coordenação de 

Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e desenvolvida no Programa 

de Pós-Graduação em Meio Ambiente e Desenvolvimento Regional (PPGMADRE) da 

Universidade do Oeste Paulista (UNOESTE). A segunda seção consiste em um 

manuscrito que discute a capacidade de mapear ilha de calor urbano superficial 

(SUHI) a partir de dados de temperatura de superfície terrestre (LST) estimados por 

algoritmos de aprendizagem de máquina. A terceira seção apresenta considerações 

sobre o desenvolvimento deste trabalho. 

O PPGMADRE é composto por duas linhas de pesquisa: Avaliação e análise 

de impactos ambientais; e Planejamento ambiental e desenvolvimento regional, que 

se enquadra no presente trabalho. O programa é interdisciplinar e conecta as 

questões ambientais ao desenvolvimento regional. As linhas de pesquisa atuam em 

um Programa de Pesquisa Interdisciplinar denominado PROINTER. 

Este relatório de defesa de mestrado discute a capacidade dos algoritmos de 

aprendizagem de máquina em otimizar a caracterização da SUHI com base em 

variáveis ambientais e socioeconômicas extraídas de imagens de satélite Landsat 8, 

Sentinel-2 e Planet. O estudo contempla o distrito de Presidente Prudente – SP e trata-

se de um estudo de um fenômeno climático. Isso atesta a proposta do PPGMADRE 

de discutir o processo de desenvolvimento regional frente às questões ambientais. 
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2 MANUSCRITO 

 

APLICAÇÃO DE APRENDIZAGEM DE MÁQUINA PARA O MAPEAMENTO DE ILHA DE CALOR 

URBANO SUPERFICIAL E PREDIÇÃO DA TEMPERATURA DE SUPERFÍCIE TERRESTRE A 

PARTIR DE VARIÁVEIS AMBIENTAIS E SOCIOECONÔMICAS 
Resumo: 

A característica da paisagem é responsável por alterar a dinâmica urbana, causando a formação de 

Ilhas de Calor Urbano (UHI). A temperatura de superfície (LST) extraída de imagens termais é uma 

fonte de informação primária para se estudar UHI, caracterizando as Ilhas de Calor Urbano Superficial 

(SUHI). Além da LST, um conjunto de variáveis ambientais e socioeconômicas tem sido adotado para 

explicar o fenômeno de SUHI. Embora algoritmos de aprendizagem de máquina demonstrem potencial 

em várias áreas, ainda se desconhece a aplicação destes na determinação da relação de variáveis 

socioeconômicas e ambientais e SUHI. Este trabalho propõe a caracterização de SUHI usando 

variáveis socioeconômicas e ambientais a partir de aprendizagem de máquina. A LST foi extraída de 

15 imagens coletadas pelo sensor TIRS, sistema Landsat 8, para o período de 2019 a 2021. Os dados 

das variáveis socioeconômicas foram obtidos no censo demográfico oficial. As variáveis ambientais, 

descritas por índices espectrais de vegetação (NDVI), de área construída (NDBI) e de superfícies 

impermeáveis (ISA), foram extraídas de imagens Sentinel-2 e Planet. Algoritmos de aprendizagem de 

máquina foram testados para avaliar a capacidade de estimar a LST com base nas variáveis citadas. 

Os algoritmos utilizados no estudo foram decision tree (DT), k‑nearest neighbour (KNN), linear 

regression (LR), multilayer perceptron (MLP), support vector regression (SVR) e random forest (RF). 

Os resultados mostraram que o algoritmo DT obteve o melhor desempenho (r= 0.96, MAE= 1.49 °C 

and RMSE= 1.88 °C), seguido do RF. Além disso a inclusão de todas as estações do ano e de variáveis 

socioeconômicas mostrou ter relevância nos resultados. A principal contribuição deste trabalho é 

verificar se os algoritmos podem otimizar o processo de caracterização da SUHI, analisando a influência 

exercida pelas variáveis estudadas. No âmbito social, as informações produzidas podem auxiliar o 

planejamento urbano visando a construção de cidades inteligentes. 

Palavras-chave: decision tree; ilha de calor urbano superficial; machine learning; sensoriamento 

remoto; temperatura de superfície terrestre. 

 

Abstract:  

The landscape feature is responsible for changing urban dynamics, causing the formation of Urban Heat 

Islands (UHI). The Land surface Temperature (LST) extracted from thermal images is a primary source 

of information for exploiting UHI, characterizing the Surface Urban Heat Islands (SUHI). In addition to 

LST, a set of environmental and socioeconomic variables has been adopted to explain the SUHI 

phenomenon. Although machine learning algorithms have demonstrated great potential in several areas 

of applications, their use to investigate the relationship between socioeconomic and environmental 

variables and SUHI is still unknown. This work proposes the characterization of SUHI using 

socioeconomic and environmental variables from machine learning approach. The LST was extracted 

from 15 images collected by the TIRS sensor, Landsat 8 system, from 2019 to 2021. Data on 

socioeconomic variables were obtained from the official demographic census. The environmental 

variables, described by spectral indices of vegetation (NDVI), built-up area (NDBI) and impervious 

surfaces (ISA), were extracted from Sentinel-2 and Planet images. Machine learning algorithms were 

tested to evaluate the ability to estimate LST based on the aforementioned variables. The algorithms 

used in the study were decision tree (DT), k‑nearest neighbor (KNN), linear regression (LR), multilayer 

perceptron (MLP), support vector regression (SVR) and random forest (RF). The results showed that 

DT algorithm obtained the best performance (r= 0.96, MAE= 1.49 °C and RMSE= 1.88 °C), followed by 

the RF. Furthermore, the inclusion of all seasons and socioeconomic variables proved to be relevant in 

the results. The main contribution of this work is to verify if the algorithms can optimize the SUHI 

characterization process, analyzing the influence exerted by the studied variables. In the social sphere, 

the information produced can help urban planning in the construction of smart cities. 
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Keywords: decision tree; surface urban heat island; machine learning; remote sensing; land surface 

temperature. 

 

Introduction 

 The urbanization process is responsible for transforming the natural 

landscape, which can cause an increase in impervious surfaces. Changes in land use 

and land cover result in an increase in land surface temperature (LST), as the higher 

the impervious surface index, the higher the temperature. Consequently, there is the 

formation of urban heat island (UHI), characterized by higher temperatures in urban 

areas when compared to rural surroundings. This phenomenon can generate negative 

impacts on the ecosystem, the local climate, the hydrological system, biodiversity and 

human health (Gomez-Martinez et al. 2021; Li et al., 2018; Mathew et al., 2015).  

As UHI is related to temperature changes, it is possible to state that LST is a 

key parameter to represent UHI (Mathew et al., 2015; Guha et al., 2018). In related 

works, the LST variation was characterized based on a single date (Weng et al., 2004; 

Jenerette et al. 2006; Mathew et al., 2015; Yoo, 2018), two (Zhang et al., 2009; Li et 

al. 2011), three (Guha et al. 2018) or four dates (Yuan and Bauer, 2007; Buyantuyev 

and Wu, 2009; Weng et al., 2011) being often dates from the same year. However, 

using a single moment may not represent its real variation in the region under analysis, 

since temperature is a dynamic variable with continuous distribution in space that can 

undergo variations due to different factors such as seasonality and humidity. To solve 

this, it is possible to work with a larger amount of satellite images in order to obtain 

more temperature information. 

Remote sensing data, through satellite images, correspond to highly relevant 

information for UHI mapping. With these data, it is possible to study the relationship 

between UHI and surface biophysical parameters in wide geographic areas and on a 

large cartographic scale, even though LST is an instantaneous measurement of 

surface temperature. Multiple studies (Li et al., 2011; Voogt & Oke, 2003; Yang et al., 

2017) adopt the term Surface Urban Heat Island (SUHI) to name the UHI characterized 

by LST, whose data are collected remotely. The Landsat 8 system, for example, 

provides thermal images at a spatial resolution of 100 meters, but resampled to 30 m, 

which enable the diurnal mapping of the LST and, therefore, the study of SUHI, at a 

regional scale (Li et al., 2011; Guha et al., 2018). 



14 
 

To understand the occurrence of SUHI, it is essential to understand the 

configuration of the urban landscape. For this reason, studies (Guha et al., 2018; 

Mathew et al., 2015; Weng et al., 2004; Yoo, 2018) seek to analyze the relationship of 

LST with environmental variables. These variables include the percentage of 

vegetation cover and the percentage of impervious surface, which are generally 

described by the Normalized Difference Vegetation Index (NDVI) and the Normalized 

Difference Built-Up Index (NDBI), respectively, which can be extracted, for example, 

from Landsat images. 

Although still few, there are studies (Buyantuyev & Wu, 2010; Tang et al., 2017; 

Yoo, 2018) that include socioeconomic variables in the SUHI study. These variables 

are described by the data from the demographic census, representing a complement 

to the analysis with environmental variables. As changes in the urban landscape do 

not occur in isolation, incorporating socioeconomic variables is fundamental. For the 

city of Baltimore, in the United States, Tang et al. (2017) performed the SUHI analysis 

with seven socioeconomic variables: population density, median income, number of 

households, average age of the population, age of construction, family size and 

unemployment rate. Population density was the variable that most influenced the SUHI 

value. Although the impact of this variable was smaller compared to environmental 

variables, it interferes, for example, in the presence of paving and constructions that, 

therefore, influence the impervious surface area, which is strongly related to the 

occurrence of SUHI (Tang et al. 2017).  

Buyantuyev and Wu (2010) also incorporated socioeconomic variables in the 

work carried out in the metropolitan region of Phoenix, United States. They concluded 

that median family income was the second most influential variable on daytime 

temperature (daytime temperature decreased by 0.36 °C in June and 0.23 °C in 

October for every $10,000 increase in family income) denoting the importance of 

combining socioeconomic and environmental variables in the analysis. 

SUHI characterization studies have adopted traditional methods of analysis 

such as Pearson's correlation (Li et al., 2011; Tang et al., 2017), path analysis, multiple 

ordinary least squares regression (OLS) and geographically weighted regression 

(GWR) (Buyantuyev and Wu, 2010). Although these approaches bring promising 

results, methods that are more robust should be investigated given the complexity of 

the interaction between SUHI and environmental and socioeconomic variables. In 

recent years, the application of machine learning techniques appears as a new 
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approach for studies in different areas. In the context of SUHI, there are the works by 

Sun et al. (2019), Osborne and Sanches (2019) and Kafy et al. (2020). However, these 

studies use machine learning to infer the value of LST, without establishing any 

relationship between environmental and socioeconomic variables and SUHI, which 

demonstrates a gap to be filled. 

In this study, we proposed a machine learning approach to predict LST and 

characterize the influence of socioeconomic and environmental variables on SUHI 

formation. As a complement, the study aims to verify whether there is any change in 

the spatial distribution of SUHI throughout the year, whether there is an association 

between the spatial distribution of SUHI and socioeconomic and environmental 

variables, and to measure the contribution of these variables in the formation of SUHI. 

The study area was divided into 309 census sectors provided by the Brazilian Institute 

of Geography and Statistics (IBGE). The scientific contribution of this study consists of 

verifying how machine learning algorithms can optimize the SUHI characterization 

process based on a set of environmental and socioeconomic variables. Whereas the 

social contribution consists of producing information that helps in urban planning and 

contributes to the production of smart cities. 

 

Materials and Method 

 The method (Fig. 1) was divided into four main phases: (1) data collection and 

preparation; collected from different satellites to generate environmental and 

socioeconomic variables; (2) data organization; submitted to statistical calculations 

and subsequent definition of attributes for each model; (3) machine learning 

regression; applied to indicate which algorithm has the best performance in predicting 

the LST according to the data provided; (4) Definition of SUHI areas; preparation of 

thematic maps and influence of variables. 
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Figure 1. Workflow of the proposed method. 

Study Area 

The study area corresponds to the district of Presidente Prudente, with an 

approximate area of 230.05 km², including the urban and rural perimeter. The 

municipality is located in the western of São Paulo state, Brazil and has an area of 

560.637 km². Its estimated population is 231,953 inhabitants in 2021 (IBGE, 2021). 

The city has a high concentration of commerce and services. Therefore, it presents a 

considerable expansion of the urban fabric over the last few years. According to the 

Köppen climate classification, the climate corresponding to the study area is tropical 

humid (Aw) characterized by dry winters (Beck et al, 2018). Figure 2 shows the location 

of São Paulo state, the location of Presidente Prudente city and the delimitation of the 

Presidente Prudente district related to the extension of the municipality. The district 

image corresponds to bands 4, 3 and 2 of the Sentinel -2 Level 2A satellite at April 22, 

2021. 
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Figure 2. Study area 

 

Data Collection and Preparation 

Our study considered all cloudless images available from 2019 to 2021. This 

strategy ensures a more accurate representation of the LST, as the temperature has 

continuous spatial variability, in addition to varying from one season to another. 

Therefore, analyzing the temperature based on isolated dates may not represent its 

true variation. For LST, 15 dates were used considering all seasons. For each LST 

date, we combine the nearest NDVI/NDBI date available.  The LST and NDVI/NDBI 

dates are not always the same due to the difference in the temporal resolution of the 

Landsat 8 - 16 days - and Sentinel-2 - 5 days - satellites. The LST dates, the 

corresponding NDVI/NDBI dates and their respective seasons are described in table 

1. 
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Table 1. Information regarding the 15 Landsat 8 and Sentinel-2 images used in this study. 

Date  

(LST) 

Landsat 8 

Date 

(NDVI/NDBI) 

Sentinel-2 

Season in the South 

Hemisphere 

22 August 2019 16 August 2019 Winter 

07 September 2019 15 September 2019 Winter 

25 October 2019 25 October 2019 Spring 

29 January 2020 28 January 2020 Summer 

18 April 2020 17 April 2020 Autumn 

04 May 2020 17 May 2020 Autumn 

21 June 2020 21 June 2020 Winter 

07 July 2020 11 July 2020 Winter 

23 July 2020 21 July 2020 Winter 

08 August 2020 10 August 2020 Winter 

24 August 2020 25 August 2020 Winter 

09 September 2020 09 September 2020 Winter 

25 September 2020 24 September 2020 Spring 

05 April 2021 02 April 2021 Autumn 

26 July 2021 26 July 2021 Winter 

 

Land Surface Temperature Retrieval from Landsat 8 

The temperature data was retrieved from the Landsat 8 OLI/TIRS satellite of 

collection 2, level 1, in order to get the primary data in digital number. To retrieve the 

LST we use the Land Surface Temperature (LST) Plugin, developed by Ndossi and 

Avdan (2016), with QGIS 2.18. This plugin allows the LST to be extracted from a 

thermal image. For this case, we used band 10 (Thermal Infrared - TIRS sensor) of the 

Landsat 8 satellite, whose spatial resolution is 30 m.  Although Landsat 8 has two 

Thermal Infrared (TIR) bands, it is recommended to only use band 10 to extract LST 

due to the calibration uncertainties presented by band 11(USGS, 2019). First, the 

plugin converts the digital number (DN) to radiance and then converts it to brightness 

temperature. Subsequently, the plugin uses the Red and Near Infrared bands (4 and 

5 respectively) to obtain the NDVI in order to perform the surface emissivity calculation 

(Ndossi e Avdan, 2016). The OLI (Operational Land Imager) sensor provides bands 4 

and 5, both with a spatial resolution of 30m. Finally the plugin estimates the surface 

temperature allowing the data to be displayed in degree Celsius. 
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The conversion from digital number (DN) to radiance is done based on Equation 

1: 

                   
(1) 

where Lλ is the radiance corresponding to the energy of the Top-of-Atmosphere 

(TOA) in Watts/(m2 srad μm), ML and AL are band-specific scale factors (multiplicative 

and additive, respectively) available in the metadata, Qcal are the pixel values of the 

image in DN and Oi is the calibration in band 10 recommended by the USGS (2019) 

whose value is -0.29. 

After radiance, it is necessary to convert to brightness temperature (Equation 2) 

so that the emitted radiation is equal to that of the real body: 

                   

(2) 

where Tsen is the brightness temperature, Lλ is the radiance and K1 and K2 are 

thermal band specific conversion constants. 

As stated, the emissivity calculation (Equation 3) can be done using the NDVI 

(Sobrino et al. 2004): 

                   
(3) 

where εv and εs is the vegetation emissivity and the soil emissivity respectively, 

Pv is the proportion of vegetation and C is the value referring to the effect of the surface 

geometry, assuming a null value for flat surfaces. 

Finally, the calculation of the LST (Equation 4) is done, in Kelvin, using the 

Planck function: 

                   

(4) 

where Ts is the land surface temperature, BT is the brightness temperature, λ is 

the wavelength of the emitted radiation, ρ is a constant equal to 1.438 ×10−2 mK and 

ε is the emissivity. To convert the temperature from Kelvin to degrees Celsius it is 

necessary to subtract the value 273.15 from the result of the equation (Carrasco et al., 

2020). 
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As the division of the territory was based on the census sectors, the number of 

pixels for the Landsat images in each sector varies from 3 to 25390 and the area in 

pixels varies from 2700 m² to 22851000 m². 

 

Acquisition of Environmental and Socioeconomic Variables 

The data to generate the NDVI and NDBI indices were extracted from the 

Sentinel-2 Level-2A satellite. The images were downloaded from the Copernicus Open 

Access Hub platform. For Sentinel-2 Level-2A images, there is no need to perform 

atmospheric correction, as this step is already part of image processing. The algorithm 

developed by DLR/Telespazio uses Top Of Atmosphere (TOA) reflectance present in 

Level-1C products to calculate Bottom Of Atmosphere (BOA) reflectance (ESA, 2015). 

Sentinel-2 images with MSI sensor have spatial resolution of 10, 20, and 60 m, 13 

spectral bands and 12-bit radiometric resolution. 

NDVI is obtained from the Near Infrared (NIR) and Red bands, bands 4 and 8 

of the Sentinel-2 satellite respectively. Therefore, to calculate the NDVI we use the 

following equation (Sobrino et al., 2004): 

                   
(5) 

NDBI is obtained from the Short Wave Infrared (SWIR) and Near Infrared (NIR) 

bands, bands 11 and 8 of the Sentinel-2 satellite respectively. Therefore, to calculate 

the NDBI we use the following equation (Zha., 2003): 

                   
    (6) 

To calculate the impervious surface area, a Planet image from April 22, 2021 

was used. The spatial resolution of the image is 3m and it was projected to the WGS-

84 UTM 22 S zone system. The image only covers the urban perimeter of the study 

area. We performed the image segmentation process and based on training samples 

containing impervious and pervious polygons we did the classification process using 

the Support Vector Machine (SVM) algorithm. 

The socioeconomic variables were obtained using data from the last census in 

Brazil, in 2010, provided by the Brazilian Institute of Geography and Statistics (IBGE). 

Based on the literature (Buyantuyev and Wu, 2010; Tang et al., 2017), the chosen 

variables were population density, number of households and median income. 
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Data Organization 

After extracting the necessary environmental, socioeconomic and temperature 

parameters, statistical information from the data was calculated. Among the statistics 

obtained, the minimum, maximum, mean, standard deviation and median values of 

NDVI and NDBI were selected, in addition to the mean of LST. It is noteworthy that the 

statistical values, as well as the variables, were calculated following the division of the 

309 census sectors. 

A total of 16 attributes were defined as input file for the algorithms: 5 for NDVI 

(minimum, maximum, mean, standard deviation and median), the same 5 for NDBI, 

the Impervious Surface Area - ISA, seasons, 3 socioeconomic variables (population 

density, number of households and median income) and the mean LST that represents 

the target attribute of the model. 

To better understand the influence of attributes, amount of data and seasons, 

given as input file for the algorithms, we created four models with specific 

characteristics: model 1, model 2, model 3A and model 3B. Model 1 has 16 attributes, 

12 training dates, 3 testing dates and considers all seasons. Model 2 does not consider 

socioeconomic variables as attributes, thus presenting 13 attributes in total. As for 

training and testing dates and seasons, model 2 follows the same pattern as model 1. 

Models 3A and 3B are complementary as they consider two seasons for each model. 

Whereas model 3A contains the autumn and winter dates, with 10 dates for training 

and 2 for testing, model 3B is composed of spring and summer dates, with 2 dates for 

training and 1 for testing. For models 3A and 3B the 16 attributes are present. The 

details of the attributes used for each model can be seen in the workflow (Figure 1) 

and the information regarding each model can be seen in table 2. 

  



22 
 

Table 2. Description of the study models 

Model Description Model 1 Model 2 Model 3A Model 3B 

Number of Attributes 16 13 16 16 

Number of Training Dates 12 12 10 2 

Number of Testing Dates 3 3 2 1 

Number of Training Instances 3708 3708 3090 618 

Number of Testing Instances 927 927 618 309 

Seasons All All 
Autumn/ 

Winter 

Spring/ 

Summer 

 

Machine Learning Regression 

Before submitting the four models to machine learning algorithms, data 

normalization was necessary so that the numerical scale of the data was common. 

Thus, the ranges of values are maintained, but the data scale varies from 0 to 1. This 

step was necessary because the data have different scales from each other, which 

may interfere in the performance of the algorithms (Singh and Singh, 2019). To 

evaluate the performance in estimating land surface temperature, our study considered 

the six most used algorithms in regression: decision tree (Dos Santos, 2020), k‑nearest 

neighbour (Ali et al., 2019), linear regression (Štepanovský et al., 2017), multilayer 

perceptron (Linares-Rodriguez et al., 2013), support vector regression (Ebrahimy e 

Azadbakht, 2019) and random forest (Sun et al., 2019). This stage was performed in 

the software Weka 3.9.5. 

Based on the amount of data available in each model, the training and testing 

datasets were divided following the proportion of 80% and 20%, respectively. All 

hyperparameters follow Weka 3.9.5 default. We also performed a 10-fold cross-

validation with 10 repetitions for each set. The metrics used to evaluate the 

performance of the algorithms were the correlation coefficient (r), the mean absolute 

error (MAE) and the root mean square error (RMSE). For regression situations, the 

MAE and RMSE metrics have been widely used (Dos Santos, 2020; Marques Ramos 

et al.,2020). 

 

Definition of SUHI Areas 

The SUHI mapping (Equations 7 and 8) was based on the LST variation (Ma et 

al. 2010; Guha et al. 2017; Guha et al. 2018): 
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                  𝐿𝑆𝑇 > 𝜇 + 0,5 ∗ SD (7) 

                  0 < 𝐿𝑆𝑇 ≤ 𝜇 + 0,5 ∗ SD (8) 

  

where μ and SD are, respectively, the mean and standard deviation of LST in 

the study area.  

The calculation of the SUHI spatial distribution is based on the LST extracted 

from the satellite image, but for this study the SUHI mapping was made for both the 

real LST and the predicted LST. 

 

Results 

 As stated, model 1 considers all environmental and socioeconomic variables 

and all seasons, model 2 differs from the first in not considering socioeconomic 

variables and models 3A and 3B consider all variables, but with two seasons in each 

model (autumn and winter for 3A and spring and summer for 3B). As the study has 4 

models applied to 6 algorithms, we obtained results for 24 regression models. Table 3 

shows the values of each metric used (r, MAE, RMSE) to evaluate the performance of 

the algorithms in the four proposed models. 

Table 3. Performance evaluation applying the trained models into testing models 

Model Algorithm r MAE RMSE 

1 

DT 0.96 1.49 1.88 

KNN 0.92 1.69 2.15 

LR 0.96 1.74 2.04 

MLP 0.94 1.78 2.16 

RF 0.98 1.54 1.91 

SVR 0.96 1.72 2.04 

     

2 

DT 0.95 1.55 1.92 

KNN 0.91 1.79 2.25 

LR 0.96 1.75 2.07 

MLP 0.92 1.93 2.31 

RF 0.97 1.60 1.96 

SVR 0.96 1.75 2.07 

     

3A 

DT 0.40 1.04 1.40 

KNN 0.40 1.38 1.98 

LR 0.55 1.33 1.60 

MLP 0.69 1.05 1.37 

RF 0.67 0.90 1.16 

SVR 0.58 1.35 1.62 

     

3B 

DT 0.72 2.55 2.66 

KNN 0.69 2.47 2.59 

LR 0.53 1.86 2.06 

MLP 0.66 3.47 3.58 

RF 0.86 2.82 2.87 

SVR 0.57 1.92 2.11 
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The correlation coefficient (r) range was between 0.40 and 0.98. The MAE 

ranged from 0.90 °C to 3.47 °C. The RMSE ranged from 1.16 °C to 3.58 °C. An analysis 

considering all metrics shows that the DT algorithm of model 1 achieved better results 

with r= 0.96, MAE= 1.49 °C and RMSE= 1.88 °C. The RF algorithm in model 1 obtained 

a correlation coefficient 2% higher than the DT, however the MAE (1.54 °C) and RMSE 

(1.91 °C) values were higher. Since RMSE squares errors, it penalizes large errors 

(Chai e Draxler, 2014), which can be useful for improving the model performance. 

Therefore, MAE and RMSE values had greater weight in this study compared to r. 

Conversely, MAE and RMSE values were the lowest in the 3A model, which 

only considers autumn and winter dates. However, the model cannot be considered 

the one with the best performance due to the low r values, ranging from 0.40 to 0.69. 

Low r values for models 3A and 3B indicate the relevance of seasons in 

predicting LST. In addition, r values up to 2% higher for model 1 compared to model 2 

demonstrate the influence of socioeconomic variables on the landscape configuration, 

which indicates the need to consider them in studies aimed at estimating the LST. For 

model 3B, higher MAE and RMSE values may be associated with the amount of dates 

available for training (2) and testing (1), which proved to be insufficient for this case. 

Figures 3, 4 and 5 show the boxplots with the evaluation metrics (r, MAE and 

RMSE respectively). Model 3B has higher r and lower MAE and RMSE than the others, 

which would characterize it as the best performing model. However, as shown in the 

test data in table 3, the same model had higher MAE and RMSE values, as well as 

median values for r. This situation is called overfitting and occurs when the model fits 

the training data. Thus, even though training presents good results, the model is not 

able to adjust to new data, in other words, the testing data. One of the causes of 

overfitting is the limited size of training set (Ying, 2019), which justifies what happened 

in the 3B model. 

Still based on the boxplots, it is possible to notice the similarity of results of 

models 1 and 2 when compared to the testing data in table 3. The graphics show the 

best performance of model 1 in relation to 2, with higher correlation coefficient values 

and lower MAE and RMSE values. 
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Figure 3. Boxplot for correlation coefficient (r) of algorithms applied to different datasets 

 

 

Figure 4. Boxplot for mean absolute error (MAE) of algorithms applied to different datasets 



26 
 

 

Figure 5. Boxplot for root mean square error (RMSE) of algorithms applied to different datasets 

 

After finding the best algorithm applied to the best model, we created thematic 

maps showing the performance of DT in predicting the LST. The maps show the 

predicted LST and the error, calculated by the difference between the predicted and 

actual temperature. Model 1 has 3 testing dates (Table 4), so we create maps for each 

test date of the model. 

 

Table 4. Information regarding the testing data from model 1 

Testing Dates Day Season in the South Hemisphere 

1 25 October 2019 Spring 

2 04 May 2020 Autumn 

3 26 July 2021 Winter 

 

The maps were prepared following the division of census sectors and are shown 

in figure 6. As a complement, table 5 shows the minimum and maximum values for 

predicted LST and LST error for each date represented on the map. 

An analysis of the error values by census sector shows that on the spring date 

only two sectors had a predicted LST higher than the real LST, since all other error 

values are negative. For that date, 92.5% of the census sectors present error values 

within the range of -5.1 to -1 and only 7.1% are within the range of -1 to 1. In autumn, 

about 78.6% of the sectors present an error value within the range of -1 to 1, which 

indicates that the errors were smaller. Finally, in winter, the predicted LST was higher 



27 
 

than the real one in most census sectors due to the positive error values. Census 

sectors with error values within the range of -1 to 1 correspond to 44.6% in winter. 

 

Table 5. Minimum and maximum values for Predicted LST and LST Error 

Day 
 Predicted LST (ºC)  LST Error (ºC) 

 Min Max  Min Max 

25 October 2019  34.65 38.12  - 5.11 1.60 

04 May 2020  27.29 33.02  - 2.43 4.22 

26 July 2021  26.19 34.43  - 3.48 5.61 

 

 

 

 

Figure 6. LST thematic maps showing the DT performance in the best model (model 1). 
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After the elaboration of the LST maps, the spatial distribution of the SUHI was 

mapped according to the real LST and the predicted LST as shown in Figure 7. Table 

6 shows the variation of LST in SUHI and NON-SUHI areas. 

During spring, SUHI areas are present in urban sectors where impervious 

surfaces are predominant. During autumn, SUHI are still concentrated in the urban 

perimeter, but they are also present in urban sectors with a high concentration of 

pervious surfaces. Conversely, during winter, an inversion occurs, as SUHI areas are 

identified in rural and urban sectors with a predominance of pervious surfaces, while 

non-SUHI areas correspond to urban sectors characterized by impervious surfaces. 

The presence of SUHI in rural areas and pervious surfaces during winter can be 

explained by the lack of water vapor, characteristic of the season, added to the fact 

that rural areas are characterized by exposed soil during this season.  

The areas were identified as SUHI at 40.41 ºC for spring, 30.20 ºC for autumn 

and 29.67 ºC for winter. The mean LST of SUHI areas are greater than the mean LST 

of non-SUHI areas by 1.77 ºC for spring, 1.58 ºC for autumn and 2.35 ºC for winter. 

Regarding the SUHI mapping based on the predicted LST, it is possible to notice 

that the algorithm overestimated the SUHI areas during the spring and underestimated 

it during the winter. The areas were identified as SUHI at 38.01 ºC for spring, 30.35 ºC 

for autumn and 30.45 ºC for winter. As the same way as the real LST, the mean of the 

predicted LST of SUHI areas are also greater than the mean LST of non-SUHI areas 

by 1.50 ºC for spring, 1.19 ºC for autumn and 2.53 ºC for winter. 

A comparison between the real LST and the predicted LST in relation to the 

number of census sectors classified in the same class (SUHI or Non-SUHI) shows that 

the predicted LST was able to classify 65% of the sectors correctly during spring, 67% 

during autumn and 64% during winter. These values are directly related to the error 

values shown in the previous maps. 
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Table 6. LST values in SUHI and NON-SUHI areas 

Day 
 Real LST – Min (ºC)  Real LST – Max (ºC)  Real LST – Mean (ºC) 

 SUHI NON-SUHI  SUHI NON-SUHI  SUHI NON-SUHI 

25 October 2019  40.41 35.12  43.12 40.40  41.05 39.28 

04 May 2020  30.20 26.13  32.75 30.19  30.71 29.13 

26 July 2021  29.67 26.11  33.33 29.66  30.70 28.35 

 

Day 
 

Predicted LST 

Min (ºC) 
 

Predicted LST 

Max (ºC) 
 

Predicted LST 

Mean (ºC) 

 SUHI NON-SUHI  SUHI NON-SUHI  SUHI NON-SUHI 

25 October 2019  38.01 34.83  38.11 37.17  38.02 36.52 

04 May 2020  30.35 27.29  33.02 30.22  30.48 29.29 

26 July 2021  30.45 26.19  34.43 30.37  31.38 28.85 

 

 

 

Figure 7. SUHI thematic maps according to the real LST (a, b, c) and the predicted LST (d, e, f). 
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Finally, the level of association between the attributes and the LST is shown in 

figure 8 and table 7. The pink color shows the attributes that are positively correlated 

to the LST and the blue color shows the attributes that are negatively correlated. 

Based on the graphic, it is possible to notice a strong correlation of LST with the 

seasons, which highlights the importance of considering seasonality in temperature 

studies. Regarding the vegetation index, the graphic shows that high vegetation 

indexes indicate lower LST. 

The Impervious Surfaces (ISA) and Built-up Area (NDBI) commonly present a 

positive correlation with LST, since the higher the ISA and NDBI indexes, the higher 

the LST. However, in this case, the negative correlation may be justified by the 

influence of the seasons, since as seen in the SUHI maps, impervious surfaces do not 

always have higher temperatures, as in winter, for example. Therefore, the data show 

the influence of seasons in urban climate studies one more time. 

Regarding the socioeconomic variables, it is shown that the mean income has 

a negative correlation with LST, which means that high income has possibly more 

vegetation and, consequently, lower temperature. Likewise, population density 

presents a positive correlation with LST. The inclusion of these variables shows how 

the urban environment varies according to the economic characteristics of the place. 

Based on the values presented in table 7, it is possible to notice that the seasons 

were the attribute with the highest correlation with temperature, with an approximate 

value of 0.51. The justification may be based on the high variability of the attribute, 

since there are dry and rainy periods throughout the year and the presence of water 

vapor directly influences the temperature. In this sense, the other attributes, such as 

socioeconomic and impermevious surfaces, tend to present constant characteristics 

or less variability, as is the case of vegetation. For this reason, they present correlation 

values within the range of -0.1 and 0.1, which indicates a lower influence when 

compared to seasonality. 
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Table 7. Values of Association between LST and the Attributes. 

Attribute Value Attribute Value Attribute Value 

Season 0.51072 
Population 

Density 
0.00455 Mean NDBI -0.02812 

Min NDVI 0.06382 
Number of 

Households 
-0.00398 Max NDBI -0.04543 

SD NDBI 0.06162 Max NDVI -0.00592 Min NDBI -0.06475 

Mean NDVI 0.03686 Median NDBI -0.01248 
Mean 

Income 
-0.06852 

Median NDVI 0.02902 SD NDVI -0.01671 ISA -0.07052 

 

  

Figure 8. Level of Association between LST and the Attributes. 

 

Discussion 

The approach proposed in this study evaluated the performance of machine 

learning algorithms in estimating LST in order to optimize the SUHI characterization. 

The potential of the algorithms was measured based on environmental and 

socioeconomic variables given as input data for the models. Our interest in including 



32 
 

socioeconomic variables aimed to investigate the contribution of these variables in 

surface temperature, as the UHI is commonly characterized only by biophysical 

parameters, such as vegetation and built-up area index. 

The application of machine learning algorithms is present in surface 

temperature (Osborne and Sanches, 2019), air temperature (Dos Santos, 2020; 

Vulova et al., 2020) and UHI studies (Yao et al., 2020). In all the studies mentioned, 

the decision tree-based algorithms outperformed the other algorithms. In our study, DT 

achieved better results due to lower MAE (1.49 °C) and RMSE (1.88 °C) values, in 

addition to high r (0.96). Furthermore, the correlation coefficient, when analyzed in 

isolation, obtained a higher value for the RF (table 3). To quantify the effects of urban 

form on LST, Sun et al. (2019) used seven variables, including NDVI. The study 

showed that the urban metrics used explain more than 90% of the temperature 

variations in the case of RF. 

Regarding the amount of satellite images used in this study, the adoption of 

different dates to better characterize the LST in different seasons proved to be efficient. 

This is because considering isolated dates, in addition to not representing the real LST 

variation, in the case of the machine learning approach, it can present overfitting, as in 

the case of the 3B model. As for the seasons, models 3A and 3B, which considered 

only two seasons of the year, presented much lower correlation coefficients compared 

to the models containing all seasons. Choe and Yom (2019) also used multiple dates 

in order to obtain a more accurate model to estimate LST. In total, the work used 35 

Landsat images between 2013 and 2018 considering all seasons. The data was 

applied in a deep learning model (deep multi-layer perceptron) and showed better 

accuracy during winter. Another study (Amorim, 2020) considers dry and rainy seasons 

to study UHI in Presidente Prudente. The study concludes that the intensity of UHI is 

greater during the dry seasons because the absence of water vapor increases the 

temperature difference between urban and rural areas, causing the phenomenon of 

UHI. 

Despite obtaining relevant results, the present work was limited by the amount 

of available dates, especially during spring and summer. In addition, the 

socioeconomic variables analyzed were extracted from the last census in Brazil, in 

2010. Another limitation is the characterization of SUHI only in the daytime period due 

to the data available for the study area. 
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 Furthermore, despite the DT algorithm presenting satisfactory results in the 

LST prediction, it did not achieve the same performance in the SUHI mapping, since 

the mapping is done based on the mean and standard deviation of the LST, which 

makes the error values have a strong influence on the final result. 

Recommendations for future studies would be to evaluate the occurrence of 

SUHI with more recent socioeconomic data and estimating LST with other techniques, 

which can be either changing the parameters of machine learning algorithms or 

applying deep learning techniques to increase the accuracy of the SUHI mapping. 

The strategy proposed in this work proved to be a promising alternative in the 

detection and characterization of SUHI. One of the interests was to include 

socioeconomic variables in the analysis of surface temperature changes, as the 

landscape configuration is also influenced by these parameters (Yoo, 2018). Despite 

having achieved high accuracy, the inclusion of new data can help to improve the 

performance of models that did not show satisfactory values (Table 3). This 

improvement can happen through the addition of new dates or the inclusion of other 

algorithms (Dos Santos, 2020). Furthermore, by using data from satellite images and 

using machine learning, the procedure presented in this study is of low cost and faster 

than traditional methods, which means it can be adopted in the urban planning of any 

city. 

 

Conclusions 

This study evaluated the performance of six machine learning regression 

algorithms in estimating LST for characterization of SUHI in four different situations. 

The best performance was achieved by DT algorithm in the first situation (model 1), 

which considers 16 attributes, including environmental and socioeconomic variables, 

in addition to considering all seasons. Although LST achieves high accuracy, the 

characterization of SUHI can still be improved by changing parameters or applying 

other techniques. The contribution of this study is to state that decision tree-based 

algorithms, including RF, can be applied in other locations for similar situations. 

Whether for the SUHI or LST study, the high temporal and spatial resolution provided 

by satellite images contribute to a more robust approach, as it better represents the 

variation in temperature data. Future studies can benefit from the information 
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presented here as a diagnosis to improve urban planning and contribute to the 

formation of smart cities. 
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3 CONSIDERAÇÕES FINAIS 

  

O presente trabalho verificou o desempenho de algoritmos de aprendizagem 

de máquina em prever a LST com base em variáveis ambientais e socioeconômicas. 

A partir dos resultados dos algoritmos foi possível a criação de mapas temáticos 

apresentando a distribuição espacial da LST estimada, bem como a distribuição 

espacial do erro do algoritmo, calculado pela diferença de valor entre a LST estimada 

e a real. 

O cálculo da distribuição espacial da SUHI foi feito com base na média e no 

desvio padrão da LST real e estimada. O mapeamento da SUHI com base na LST 

estimada alcançou acertos de 64% a 67% quando comparados à classificação feita 

pela LST real. Portanto para a caracterização da SUHI é possível aplicar novos 

parâmetros ou novas técnicas, como deep learning, para melhorar a predição. Quanto 

às variáveis abordadas no estudo verificou-se que as estações do ano apresentam 

forte correlação com a LST. 

O estudo é relevante para o planejamento das cidades, pois oferece 

informações a respeito de diferentes parâmetros que alteram a configuração da 

paisagem urbana. Com base nas informações aqui apresentadas é possível identificar 

o fator de maior impacto nas mudanças de temperatura que acabam desencadeando 

fenômenos climáticos como as ilhas de calor urbano (UHI). Por se tratar de uma 

questão climática e urbana, o estudo pode beneficiar diferentes cidades, uma vez que 

pode ser replicado em outras localidades, além dos dados poderem auxiliar prefeituras 

na gestão urbana. 

 


