
 
 

 
PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO 

DOUTORADO EM MEIO AMBIENTE E  
DESENVOLVIMENTO REGIONAL 

 
 
 
 
 
 
 
 
 
 
 

MAYARA MAEZANO FAITA PINHEIRO 
 
 
 
 
 
 
 
 
 

APRENDIZAGEM PROFUNDA NA SEGMENTAÇÃO SEMÂNTICA DE RIOS EM 
IMAGENS DE ALTA RESOLUÇÃO ESPACIAL 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Presidente Prudente - SP 
2023 



 
 

 
PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO 

DOUTORADO EM MEIO AMBIENTE E  
DESENVOLVIMENTO REGIONAL 

 
 
 
 
 
 
 
 
 
 
 

MAYARA MAEZANO FAITA PINHEIRO 
 
 
 
 
 
 
 
 
 

APRENDIZAGEM PROFUNDA NA SEGMENTAÇÃO SEMÂNTICA DE RIOS EM 
IMAGENS DE ALTA RESOLUÇÃO ESPACIAL 

 
 
 
 

Tese apresentada Pró-Reitoria de Pesquisa e 
Pós-Graduação, Universidade do Oeste 
Paulista, como parte dos requisitos para 
obtenção do título de Doutora em Meio 
Ambiente e Desenvolvimento Regional – 
Área de concentração: Ciências Ambientais. 

 
Orientadora: Dra. Ana Paula Marques Ramos 
Co-orientador: Dr. Marcelo Rodrigo Alves 
 
Colaborador: Lucas Prado Osco (UNOESTE).  
Colaborador externo: Keiller Nogueira 
(Universidade de Stirling – Escócia, Reino 
Unido). 
 
 
 

Presidente Prudente - SP 
2023  



 
 

 

  

 
526.982 
P654a 

 
Pinheiro, Mayara Maezano Faita. 

Aprendizagem profunda na segmentação semântica de rios 
em imagens de alta resolução espacial /    Mayara Maezano 
Faita Pinheiro. – Presidente Prudente, 2023.  

102f.: il. 
 
 

Tese (Doutorado em Meio Ambiente e Desenvolvimento 
Regional) - Universidade do Oeste Paulista – Unoeste, 
Presidente Prudente, SP, 2023. 

Bibliografia. 
Orientadora: Dra. Ana Paula Marques Ramos   
Co-orientador: Dr. Marcelo Rodrigo Alves 

 
 

1. Mapeamento de corpos d’água. 2. Sensoriamento 
Remoto.  3. Redes de aprendizagem profunda. I. Título. 

 
 

Catalogação na fonte: Maria Letícia Silva Vila Real – CRB 8/10699 



 
 

MAYARA MAEZANO FAITA PINHEIRO 
 
 
 
 
 

APRENDIZAGEM PROFUNDA NA SEGMENTAÇÃO SEMÂNTICA DE RIOS EM 
IMAGENS DE ALTA RESOLUÇÃO ESPACIAL 

 
 
 

Tese apresentada Pró-Reitoria de Pesquisa e 
Pós-Graduação, Universidade do Oeste 
Paulista, como parte dos requisitos para 
obtenção do título de Doutora em Meio 
Ambiente e Desenvolvimento Regional – 
Área de concentração: Ciências Ambientais. 

 
Presidente Prudente, 24 de fevereiro de 
2023. 

 
 

 
BANCA EXAMINADORA 

 
 
________________________________________________ 
Prof. Dra. Ana Paula Marques Ramos 
Universidade do Oeste Paulista – Unoeste 
Presidente Prudente - SP 
 
________________________________________________ 
Prof. Dr. Marcelo Rodrigo Alves 
Universidade do Oeste Paulista – Unoeste 
Presidente Prudente – SP 
 
________________________________________________ 
Prof. Dr. Lucas Prado Osco 
Universidade do Oeste Paulista – Unoeste 
Presidente Prudente – SP 
 
________________________________________________ 
Prof. Dr. José Marcato Júnior 
Universidade Federal de Mato Grosso do Sul 
Campo Grande – MS 
 
________________________________________________ 
Prof. Dra. Tatiana Sussel Gonçalves Mendes 
Universidade Estadual Paulista - UNESP 
São José dos Campos – SP 



 
 

DEDICATÓRIA 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ao meu marido Rafael e filho Pedro pelo apoio, 

compreensão e paciência durante minhas ausências nos 

últimos anos. Aos meus pais, por incentivarem e serem 

minha base para chegar até aqui. 

  



 
 

AGRADECIMENTOS 
 

A Deus e Nossa Mãe Maria, que sempre sustentaram minhas caminhadas, 

sempre cuidaram e olharam por mim e minha família, por derramarem tantas graças 

e colocarem pessoas especiais em meu caminho.  

Ao meu marido Rafael e filho Pedro, por me manterem firme na caminhada, 

pela paciência em minhas ausências, pelo apoio, carinho e amor infinito. 

Aos meus pais, Carlos e Karen, que me apoiam desde sempre, incentivam e 

me fazem acreditar que sou capaz, por ensinarem a ser determinada e me levarem 

ao caminho da fé.  

Aos amigos de caminhada, Bruno Magro Rodrigues, Felipe Gomes, Letícia 

Ap. Costa Magro, Renata Mafra, Fabio Friol, Jacqueline Tamashiro, companheiros de 

grupo de estudos e parte da vida. Ao amigo Lucas Prado Osco, pela paciência, 

franqueza e solicitude, sempre com contribuições de alto nível, enriquecendo o 

trabalho e a vida.  

À professora Dra. Ângela Kinoshita, por mesmo que por um curto período, ter 

compartilhado seu conhecimento, e enriquecido minha experiência acadêmica e 

pessoal. Aos Prof. José Marcato Júnior, Prof. Keiller Nogueira, Maximilian Melo, que 

mesmo distante, contribuíram significamente com os avanços do trabalho. 

À orientadora Dra. Ana Paula, que considero uma amiga, e tem ensinado o 

caminho da pesquisa científica de forma tão leve. Com plenitude, consegue extrair o 

melhor de cada um, nos ensina a caminhar sozinhos, porém sabendo do suporte que 

estará de prontidão para auxiliar quando preciso. Muito obrigada, por contribuir em 

minha transformação como pessoa e profissional. 

Aos professores que fizeram parte da banca avaliadora com contribuições e 

críticas construtivas essenciais para enriquecimento do trabalho.  

Aos professores e funcionários do PPGMADRE, nos ensinando e dando 

suporte nessa caminhada. E a todos que de alguma forma me incentivaram, apoiaram 

e contribuíram para que este trabalho fosse concluído. O presente trabalho foi 

realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível 

Superior – (Brasil) CAPES – Código de Financiamento 001.  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Mas aqueles que contam com o 

Senhor renovam suas forças;  

Ele dá-lhes assa de águia.  

Correm sem se cansar, 

Vão pra frente sem se fatigar.” 

Isaías, 40:31. 

 
 

  



 
 

RESUMO 
 

Aprendizagem Profunda na Segmentação Semântica de Rios em Imagens de 
Alta Resolução Espacial 

 
O mapeamento de rios é fundamental para o diagnóstico e planejamentos ambiental 
e o sensoriamento remoto tem auxiliado em investigações relacionadas a este recurso 
hídrico. Um método que tem ganhado atenção e auxiliado na tarefa de mapear rios é 
o método de aprendizagem profunda. Os métodos de aprendizagem profunda mais 
utilizados na tarefa de mapeamento (segmentação semântica) são baseados em 
arquiteturas de rede em convolução e, mais recentemente, Vision Transformers. São 
métodos robustos que tem apresentado uma boa performance para esse tipo de 
tarefa, porém, ainda existem desafios a serem superados ao mapear feições de rios 
estreitos. Nesse sentido, considerando a diversidade de feições de rios e ausência de 
uma abordagem que se aprofunde em suas características como a largura dos 
mesmos, o objetivo deste estudo é mapear rios com diferentes tamanhos em imagens 
aéreas RGB de alta resolução espacial utilizando redes profundas de segmentação 
semântica. Para isso, o presente trabalho buscou avaliar o desempenho de redes 
profundas de segmentação semântica ao identificar rios largos (largura superior a 10 
metros) em imagens RGB de alta resolução espacial; caracterizar as capacidades e 
limitações das redes profundas de segmentação semântica em identificar rios 
estreitos (largura inferior a 10 metros) em imagens RGB de alta resolução espacial; e 
avaliar o desempenho de redes profundas de segmentação semântica baseadas em 
Transformers para segmentar rios, comparando-as com as redes neurais profundas 
tradicionais baseadas em convoluções. As imagens aéreas possuem 1 m de 
resolução e foram treinadas e testadas em ambiente computacional, utilizando os 
métodos de segmentação semântica baseados em convolução e Vision Transformer. 
Em seguida, os resultados foram comparados qualitativamente, por meio visual, e 
quantitativamente, por meio de métricas de avaliação (Acurácia, F1-Score, Precisão, 
Recall, IoU). Os resultados mostraram que o desempenho das redes profundas de 
segmentação semântica varia conforme a largura dos rios. A melhor abordagem para 
segmentar rios largos (superior a 10 metros) e rios estreitos (inferior a 10 metros) é 
usar ambos os tipos de larguras de rios no treinamento das redes profundas de 
segmentação semântica. Outra descoberta é que as redes profundas baseadas em 
Vision Transformer superaram a performance das redes profundas baseadas em 
convoluções para a tarefa de segmentação semântica de rios largos e estreitos em 
imagens RGB de 1 m de resolução. O SegFormer superou as métricas de avaliação 
para segmentação de rios com um F1-Score cima de 98%. Os trabalhos futuros devem 
continuar investigando as redes profundas baseadas em Vision Transformer, podendo 
explorar imagens multi-temporais e multimodais, a fim de melhorar o monitoramento 
de recursos hídricos. 
 
Palavras-chave: Mapeamento de corpos d’água. Sensoriamento Remoto. Redes de 
aprendizagem profunda.  



 
 

ABSTRACT 
 

Deep Learning in Semantic Segmentation of Rivers in High Spatial Resolution 
Images 

 
Mapping rivers is essential for diagnosis and environmental planning, and remote 
sensing has helped in research related to this water resource. A method that has 
gained attention and helped in the task of mapping rivers is the deep learning method. 
The most used deep learning methods in the mapping task (semantic segmentation) 
are based on convolutional network architectures (CNN - Convolutional Neural 
Networks) and, more recently, Vision Transformers. They are robust methods that 
have shown good performance for this type of task, however, there are still challenges 
to be overcome when mapping features of narrow rivers. In this sense, considering the 
diversity of river features and the absence of an approach that goes deeper into their 
characteristics such as their width, the objective of this study is to map rivers with 
different sizes in RGB aerial images of high spatial resolution using deep segmentation 
networks semantics. For this, the present work sought to evaluate the performance of 
deep semantic segmentation networks when identifying large rivers (width greater than 
10 m) in RGB images of high spatial resolution; characterize the capabilities and limits 
of deep semantic segmentation networks to identify narrow rivers (width less than 10 
m) in high spatial resolution RGB images; and to evaluate the performance of deep 
semantic segmentation networks experimented in Vision Transformer to segment 
rivers, comparing them with traditional neural networks experimented in convolutions. 
The aerial images have 1 m of resolution and were trained and tested in a 
computational environment, using semantic segmentation methods based on 
convolution and Vision Transformer. Then, the results were compared qualitatively, 
visually, and quantitatively, using evaluation metrics (Accuracy, F1-Score, Precision, 
Recall, IoU). The results appreciated that the performance of deep semantic 
segmentation networks varies according to the width of the rivers. The best approach 
to segmenting large rivers (greater than 10 m) and narrow rivers (less than 10 m) is to 
use both river widths to train the deep semantic segmentation networks. Another 
finding is that the deep networks in Vision Transformers outperformed the deep 
networks in convolutions for the semantic segmentation task of large and narrow rivers 
in RGB images of 1 m resolution. SegFormer outperformed as evaluation indicators 
for river segmentation with an F1-Score above 98%. Future work should continue to 
investigate the aspiring deep networks in Vision Transformers, being able to explore 
multitemporal and multimodal images, in order to improve the monitoring of water 
resources. 
 

Keywords: Mapping of water bodies. Remote sensing. Deep learning networks. 
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1 CONSIDERAÇÕES INICIAIS 
 
Graduada em Engenharia Ambiental pela Universidade do Oeste Paulista 

(2010). Especialista em Gestão Ambiental em Municípios pela Universidade 

Tecnológica Federal do Paraná (UTFPR) (2015). Mestre em Meio Ambiente e 

Desenvolvimento Regional pelo Programa de Pós Graduação da Universidade do 

Oeste Paulista (PPGMADRE - UNOESTE) (2019). Durante o mestrado fui bolsista 

CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) e 

desenvolvi a pesquisas na área de ciências ambientais, a partir do uso de 

geotecnologias. Na dissertação de mestrado, atuei no desenvolvimento de uma 

abordagem geoespacial para a definição de área para aterro sanitário em escala 

intermunicipal (aterro consorciado). Integrante dos grupos de pesquisa: Núcleo de 

Estudos Ambientais (NEAmb) desde 2015 e Geomática e Inteligência Artificial 

Aplicada a Análise Ambiental (Gi3A) desde 2019. Entrei no doutorado em abril de 

2019, também com bolsa CAPES, e tenho trabalhado com métodos de aprendizado 

profundo no processamento de dados de sensoriamento remoto para mapeamento de 

recursos hídricos. Dentro do PPGMADRE, me mantive na linha de pesquisa 2 - 

Planejamento Ambiental e Desenvolvimento Regional, que envolve 4 eixos temáticos, 

dos quais, a minha pesquisa se insere no eixo “estratégias de manejo e conservação 

ambiental e de bacias hidrográficas”. Ainda nesta linha de pesquisa, os estudos 

procuram analisar o impacto da gestão do conhecimento e da informação no 

planejamento ambiental e desenvolvimento regional, bem como no desenvolvimento 

econômico e social e seu impacto ambiental. 

Este documento está organizado em: Introdução Geral, Capítulo I, Capítulo II, 

Capítulo III, Considerações Finais. A introdução geral, apresenta a problemática e 

objetivos da presente pesquisa. O Capítulo I é composto por um breve levantamento 

científico sobre a literatura que compõe a pesquisa em formato de manuscrito. Neste 

capítulo, o levantamento é feito por uma análise cienciométrica de estudos que 

usaram aprendizagem profunda para extrair feições de corpo d’água em imagens de 

alta resolução espacial. Em seguida, no Capítulo II é apresentado uma abordagem 

para mapear rios com diferentes larguras (rios largos e rios estreitos) usando 

aprendizagem profunda em imagens RGB de alta resolução espacial. O Capítulo III 

apresenta a delineação de um manuscrito que completa o objetivo geral da presente 

pesquisa. Neste manuscrito é apresentado um novo método de aprendizagem 
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profunda para mapear rios (largos e estreitos) em imagens RGB de alta resolução 

espacial. Por fim as Considerações finais apresentam as principais conclusões da tese 

e os direcionamentos para trabalhos futuros. 

 

1.1 Introdução geral 
 

O mapeamento de recursos hídricos é fundamental para o planejamento 

ambiental, pois ajuda no desenvolvimento de projetos de conservação da água, 

monitoramento fluvial, prevenção de desastres e uso sustentável dos recursos 

hídricos (GUI et al., 2022). Ademais, esse tipo de mapeamento favorece investigações 

de detecção de seca, diagnóstico e planejamentos futuros. O mapeamento de rios 

pode ser uma tarefa extenuante para ser realizada exclusivamente em campo, 

principalmente quando se trata de grandes áreas geográficas, ou de mapeamento em 

períodos diferentes do ano. As imagens de sensoriamento remoto têm, por 

conseguinte auxiliado em tarefas como essas relacionadas aos recursos hídricos, 

como: mapeamento de águas superficiais (TANG et al., 2022), monitoramento de 

enchentes (SHAHABI et al., 2020), monitoramento da qualidade da água (SAGAN et 

al., 2020), análise e predição batimétrica (MA et al., 2020). Um estudo (LIU et al., 

2019) foi capaz de identificar materiais, separadamente, inorgânicos e orgânicos em 

suspensão em lagos eutrofizados utilizando somente imagens de satélite 

(OLCI/Sentinel-3A). Outro trabalho (SUN et al., 2018), investigou a confiabilidade da 

calibração de um modelo hidrológico para bacias regionais não calibradas, com base 

nas larguras da superfície da água do rio derivadas de imagens ópticas de satélite 

(QuickBird, IKONOS e WorldView-1), e demonstram como os dados de sensoriamento 

remoto podem ser mais efetivamente integrados à modelagem hidrológica. Esses e 

outros estudos (ELHAG et al., 2019; KUHN et al., 2019) demonstram a viabilidade de 

se mapear a feição de rios em imagens de sensoriamento remoto e, inclusive, de se 

identificar características relacionada aos aspectos físico-químico, como a poluição, 

nesses corpos d’água. 

As imagens de sensoriamento remoto podem ser adquiridas a partir de 

diferentes veículos e plataformas (NOVO, 2010), como plataformas orbitais, por meio 

de satélites, e plataformas aéreas, por meio de aviões ou Veículo Aéreo não Tripulado 

(VANT). As imagens orbitais têm sido amplamente usadas para o mapeamento de 

rios. Uma das razões é a facilidade de acesso a imagens gratuitas, como o caso do 
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satélite Landsat (USGS, 2020), e da resolução espacial média que apresentam, por 

exemplo, uma resolução de 30 m no caso das imagens Landsat. No entanto, imagens 

de média, ou mesmo baixa resolução, limitam a escala de mapeamento, por não 

permitirem a extração de rios menos espessos, como os rios estreitos. Uma 

necessidade neste caso é a adoção de imagens de maior resolução espacial que 

poderão não só permitir o mapeamento de rios mais estreitos como também a 

produção de um mapa em maior nível de detalhe. Nesse caso, espera-se que o uso 

de padrões espaciais no lugar de informações espectrais possa facilitar a identificação 

de rios. 

Os métodos tradicionais mais usados, até então, para a extração de rios em 

imagens são baseados em características espectrais dos corpos d’água, definindo 

limites e usando índice para classificar e extrair informações sobre o corpo d’água 

(FEYISA et al., 2014; LI et al., 2016; WANG et al., 2018; BAO; LV; YAO, 2021; 

YULIANTO et al., 2022). Além desses, os métodos classificação avançaram no 

sentido de automatização e melhores desempenhos usando machine learning para 

extrair feições de rios (ACHARYA; SUBEDI; LEE, 2019; LI et al., 2021a; LI; FAN; QIN, 

2021). Os métodos propostos têm por objetivo reduzir a quantidade de processos 

manuais realizados pelo usuário e, em paralelo, facilitarem a identificação de rios por 

meio de realces ou técnicas de pré-processamento de imagens e extração de 

características. Embora nota-se progressos nesses métodos, os mesmos ainda 

apresentam dificuldades em diferenciar feições de água com sombras, áreas 

edificadas ou nuvens.  

Recentemente, uma nova abordagem tem sido explorada em imagens de 

sensoriamento remoto. Essa abordagem vem do campo da inteligência artificial, a 

aprendizagem profunda (Deep Learning – DL). Como uma subclasse do aprendizado 

de máquina, a aprendizagem profunda possui redes neurais mais profundas dos que 

as de aprendizado de máquina. Além disso, dispõe de uma representação hierárquica 

dos dados, permitindo maiores recursos de aprendizado, maior desempenho e 

precisão do que métodos mais comuns (LECUN; BENGIO; HINTON, 2015). As redes 

neurais profundas necessitam de maior potência computacional e alta demanda de 

dados rotulados. A segmentação semântica realiza a rotulagem em nível de pixel, ou 

seja, categoriza cada pixel em um conjunto de objetos (MINAEE et al., 2021). Contudo, 

as redes apresentam desempenhos impressionantes em diversas tarefas, como na 

segmentação semântica de pomares (OSCO et al., 2021), de copas de árvores 
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(MARTINS et al., 2021), construções urbanas (YI et al., 2019; SEONG; CHOI, 2021), 

estimativa de nível de água (MUHADI et al., 2021), entre outros. 

 

1.2 Problemática 
 

A segmentação semântica de imagens também tem sido utilizada na tarefa de 

detecção e extração de rios em imagens de sensoriamento remoto. Um dos primeiros 

trabalhos que investigaram essa perspectiva (ISIKDOGAN; BOVIK; PASSALACQUA, 

2017) usou uma abordagem baseada em aprendizado profundo para o mapeamento 

de águas superficiais. O estudo propôs uma rede neural totalmente convolucional 

(FCN - Fully Convolutional Network) chamado Deep-WaterMap, para segmentar água 

em imagens Landsat. Apesar de apresentarem F1-Score de 90% o modelo proposto 

foi testado apenas em imagens multiespectrais de média-resolução. Estudos recentes 

tem usado a arquitetura de rede CNN que tem apresentado resultados importantes 

(ALAM et al., 2021). Mais recentemente, uma nova arquitetura de rede tem sido 

investigada, a arquitetura baseada em Transforers (VASWANI et al., 2017) que, ao 

obter excelentes resultados na área de programação de linguagem natural, chamou 

atenção da área de visão computacional. Inicialmente esta arquitetura de rede foi 

aplicada em conjunto ou substituindo componentes em redes convolucionais, a Vision 

Transformer (ViT) aplicada para classificação de imagens em visão computacional 

mostrou o potencial dessa arquitetura ao ser usada puramente (DOSOVITSKIY et al., 

2020). Esta arquitetura apresentou excelentes resultado e ao mesmo tempo exigindo 

menor recurso computacional para treinamento. Baseado em ViT, o SegFormer (XIE 

et al., 2021) estruturado com um codificador de arquitetura hierárquica, menor do que 

o ViT, porém, capaz de capturar recursos de alta resolução grosseiros e finos de baixa 

resolução (XIE et al., 2021). Outra importante característica da estrutura do 

SegFormer é o uso de um decodificador leve e compacto baseado em MLP (Multilayer 

Perceptron) que exige menor custo computacional (XIE et al., 2021). O SegFormer 

tem sido usado em diversos contextos, como para mapear vegetação urbana 

(GEORGES GOMES, 2022) e mapeamento de áreas queimadas (GONÇALVES et al., 

2023). Porém, tem sido pouco explorado no contexto de recursos hídricos. 

Considerando o potencial do SegFormer em obter ganhos de contexto e em 

multiescala, investigar o seu potencial para mapear recursos hídricos como os rios 

poderá trazer novas descobertas científicas. 
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Uma outra questão a ser considerada é quando se trata de imagens de baixa 

resolução espectral, como imagens RGB (Red, Green, Blue), o desafio de mapear 

corpos d’água pode ser maior quando comparadas com imagens multiespectrais, por 

exemplo. Por não se beneficiarem das faixas do infravermelho próximo e médio, não 

se beneficiam, portanto, do maior contraste entre a água e demais alvos. Por outro 

lado, as imagens RGB podem se beneficiar quando trabalhadas em alta resolução, 

por exemplo. Imagens com maior nível de detalhes apresentam menor mistura de 

pixels, porém, possuem maior variação de pixels e maior volume dados, precisando, 

portanto, de modelos mais robustos para capturar as feições do alvo. 

Outro problema a ser superado é a rotulagem das feições de interesse (rios) 

para compor a base de dados. Por exigir muitos recursos humanos e de tempo para 

rotular um grande volume de amostras, a deficiência de conjuntos de dados rotulados 

é algo que precisa ser superado. Segundo um trabalho atual de revisão de literatura 

(LI et al., 2022), existem apenas 10 conjuntos de dados disponíveis publicamente que 

podem ser aplicados para a avaliação e aprendizado de supervisão da classificação 

de corpos d'água a partir de imagens ópticas de sensoriamento remoto de alta 

resolução. Ainda, segundo os autores, os conjuntos de dados de imagens de alta 

resolução existentes não são suficientes para fornecer características globais de 

corpos d’água tão diversificados. Essa diversidade de características de corpos 

d’água é outra questão a ser levantada, sendo difícil defini-los com um padrão 

unificado. Os corpos d’água podem ser divididos, de uma maneira geral, em grandes 

(rios principais e lagos) e pequenos (afluentes e lagoas), apresentando características 

multiescalares e, portanto, muitos desafios para a generalização em escala das 

abordagens existentes (LI et al., 2022). Além disso, as diferenças de distribuição 

devem ser consideradas, por exemplo, imagens obtidas de regiões ou sensores 

divergentes apresentam grandes diferenças de iluminação, tom de cor, textura e 

aparência (LI et al., 2022). Rios largos, por exemplo, possuem cor, tamanho, forma e 

características espectrais mais homogêneas. Enquanto rios estreitos apresentam 

sinuosidade, sedimentação e pixels de mistura, o que costuma tornar essas feições 

mais difíceis de segmentar. Portanto, fatores como variação de formato, tamanho, 

distribuição, complexidade de cena, assinatura espectral, bordas complexas e difíceis 

de serem delimitadas devem ser considerados no mapeamento de rios por meio do 

sensoriamento remoto e métodos de aprendizado profundo.  
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Estudos que investiguem a extração de feições de rios em imagens RGB de 

alta resolução espacial explorando novas redes de segmentação semâtica são 

recentes (MIAO et al., 2018; WANG et al., 2021; LI et al., 2021b; GAUTAM; SINGHAI, 

2022; HU et al., 2022). Contudo, os estudos mensionados apresentam alguns 

problemas a serem enfrentados em comum, como a dificuldade em se segmentar rios 

estreitos com alta acurácia. Nenhum trabalho até o momento, avaliou a performance 

e desempenho das redes de segmentação semântica em diferentes larguras de rios, 

como os rios estreitos, e a atual proposta visa o mapeamento dessas feições em 

grande escala cartográfica. Além disso, o mapeamento de rios em imagens de baixa 

resolução espectral, como as imagens as RGB, usando redes neurais ViT não foram 

testadas, constituindo assim, outra lacuna científica importante que requer ser suprida. 

Nesse sentido, como originalidade da presente proposta se tem a aplicação de 

métodos de aprendizado profundo (redes profundas de segmentação semântica) em 

imagens aéreas RGB de alta resolução espacial para mapear rios largos e estreitos, 

considerando os métodos do estado-da-arte em segmentação semântica para essa 

tarefa.  

 

1.3 Objetivo geral 
 

Mapear rios com diferentes tamanhos em imagens aéreas RGB de alta 

resolução espacial utilizando redes profundas de segmentação semântica.  

 

1.4 Objetivos específicos 
 

Como objetivos específicos, tem-se: (1) avaliar o desempenho de redes 

profundas de segmentação semântica ao identificar rios com largura superior a 10 

metros em imagens RGB de alta resolução espacial; (2) caracterizar as capacidades 

e limitações das redes profundas de segmentação semântica em identificar rios de 

pouca largura (inferior a 10 metros) em imagens RGB de alta resolução espacial; e (3) 

avaliar o desempenho de redes profundas de segmentação semântica baseadas em 

ViT, comparando-as com as redes tradicionais baseadas em convoluções. 
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1.5 Contribuições  
 

As principais contribuições deste trabalho envolvem disponibilizar uma 

estratégia de mapeamento acurado de rios com diferentes características a partir de 

imagens de alta resolução espacial, o que é importante para auxiliar tarefas de 

planejamento e gestão de recursos hídricos. Com esse tipo de produto é possível 

responder questões do tipo: “Quais tipos e dimensões de rios existem em determinada 

área geográfica?”, o que é importante para agilizar e priorizar medidas de 

planejamento, gestão e conservação dos mesmos. Outra contribuição deste estudo é 

tornar público o conjunto de dados rotulado. A tarefa de anotação de feições em 

imagens é onerosa em termos de tempo e nem sempre considerada fácil. Assim, 

disponibilizar esses dados irá permitir que novos modelos de aprendizagem profunda 

sejam treinados e aprimorados para a segmentação semântica de rios. Ademais, a 

estrutura deste trabalho poderá ser replicada por outros estudos, envolvendo novos 

conjuntos de dados e podendo beneficiar outras regiões do Brasil e do mundo. 
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CAPÍTULO 1 - DEEP LEARNING APPLIED TO WATER BODY EXTRACTION IN 
REMOTE SENSING IMAGES - A SCIENTOMETRIC ANALYSIS 

 

Abstract: Deep learning methods have been used for many tasks, including water 

body extraction. Understanding which types of images, sensor platforms, image 

resolution, deep net, and metrics, most explored in recent years can give us 

information about trends or gaps in the literature related to the subject of study. So far, 

there is a lack of study of the quantitative aspects of science and scientific production 

referring to the information mentioned above. Thus, our work aimed to compose a 

scientometric analysis for the extraction of water bodies in remote sensing images 

using deep learning methods and to obtain an overview of current research. We 

analyzed 366 articles and verified the trends and paths taken so far within the adopted 

theme. Results indicated an increase over the years and a great interest in water body 

extraction in remote sensing images using deep learning. Another finding is that the 

subject of water bodies extraction has been studied mostly from multispectral images, 

with more than 10 m of resolution images. In this way, a specific approach using RGB 

images in high-resolution remote sensing (HRRS) images to extract water bodies with 

deep learning methods has been little explored in the last few years. In addition, there 

is another lacune to investigate the narrow rivers segmentation from HHRS RGB 

images exploring deep learning approaches accurately. This study is expected to open 

paths and contribute to the advancement of research in this field. 

 

Keywords: Deep-learning; Remote sensing; High-Resolution; Water body mapping. 

 

Resumo: Os métodos de aprendizado profundo têm sido usados para muitas tarefas, 

incluindo a extração de corpos d'água. Entender quais tipos de imagens, plataformas 

de sensores, resolução de imagens, redes profundas e métricas mais exploradas nos 

últimos anos pode nos viabilizar informações sobre tendências ou lacunas na literatura 

relacionada ao tema de estudo. Até o momento, falta o estudo dos aspectos 

quantitativos da ciência e da produção científica referente às informações acima 

mencionadas. Assim, nosso trabalho teve como objetivo compor uma análise 

cienciométrica para extração de corpos d'água em imagens de sensoriamento remoto 

utilizando métodos de aprendizado profundo e obter um panorama das pesquisas 

atuais. Analisamos 366 artigos e verificamos as tendências e caminhos percorridos 
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até o momento dentro do tema adotado. Os resultados indicaram um aumento ao 

longo dos anos e um grande interesse na extração de corpos d'água em imagens de 

sensoriamento remoto usando aprendizado profundo. Outra constatação é que o tema 

da extração de corpos d'água tem sido estudado principalmente a partir de imagens 

multiespectrais, com mais de 5 metros de resolução de imagens. Desta forma, uma 

abordagem específica usando imagens RGB de sensoriamento remoto de alta 

resolução espacial para extração de corpos d'água com métodos de aprendizado 

profundo tem sido pouco explorada nos últimos anos. Além disso, há outra lacuna 

para investigar a segmentação de rios estreitos a partir desse tipo de imagem 

explorando abordagens de aprendizado profundo com precisão. Espera-se que este 

estudo abra caminhos e contribua para o avanço das pesquisas nesta área. 

 

Palavras-chave: Aprendizagem profunda; Sensoriamento remoto; Alta resolução; 

Mapeamento de corpos d'água. 

 

1. INTRODUCTION 
Deep learning (DL) methods consist of powerful and robust techniques to 

improve the mapping of the Earth’s surface (OSCO et al., 2021b). Specifically for DL 

tasks including images, the most frequently used architecture are based on CNN 

(Convolutional Neural Network), which can work with object or region detection, 

segmentation, and recognition (LECUN, 1989; LECUN; BENGIO; HINTON, 2015). The 

DL method with CNN architecture is widely used for a variety of tasks in remote sensing 

images, such as for extracting buildings (WANG; MIAO, 2022), counting plants, and 

detecting plantation rows (OSCO et al., 2021a), apple classification (SUN et al., 2021), 

plant leaf disease (LU; TAN; JIANG, 2021), water level prediction (PAN et al., 2020), 

water quality (BARZEGAR; AALAMI; ADAMOWSKI, 2020), and water body 

segmentation (ZHANG et al., 2021). To summarize it, we create a word cloud with a 

simple search for articles based on the Web of Science database using the words: 

Deep Learning AND Remote Sensing (Figure 1). Thus, it is clear that words, such as 

CNN, segmentation, detection, and classification are very frequent, reinforcing the use 

of CNN for image classification issues. Another observation is the following cloud 

words: urban, road, water, crop, and tree, which appear in that respective order of 

frequency. This demonstrates how much the topic related to water has been widely 

studied. 
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Figure 1- Word cloud from articles with “deep learning” and “remote sensing” string. 

 
Fonte: Autor (2023). 

 

The importance of water resources for human existence and the management 

of life cycles in nature, studying their dynamics and comportment, has been essential 

for our survival and maintenance of life. Based on remote sensing images, water 

resources like the sea, water bodies, streams, lakes, and ponds have been widely 

studied. One of the ways to study the characteristics of water has been the extraction 

or mapping of water resources using DL methods applied in remote sensing images 

(ZHAO; FENG, 2022; MORADKHANI; FATHI, 2022; LUO; TONG; HU, 2021; YANG; 

WANG; ZENG, 2021; JAMES; SCHILLACI; LIPANI, 2021). A study (HOESER; 

BACHOFER; KUENZER, 2020) afford an overview of the CNN for image segmentation 

and object detection in Earth observation research by analyzing 429 publications. The 

authors concluded regards the CNN architecture in earth observation is that is an 

established tool and will further continue to increase its relevance. Another conclusion 

reveled for the authors is related to the availability of datasets with very high spatial 

resolution and suggests that studies focused on object dynamics will widely employ 
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the CNN DL model. A review (SIT et al., 2020) focused on DL methods in the water 

subject reviewed 129 studies. The information evaluated by them consisted of 

Architecture, Framework/Library/Programming Language, Dataset, Source Code 

Sharing, Reproducibility, Subfield: Deep Learning, and Subfield: Environment. One of 

the conclusions pointed out by the authors indicated that the water topic will continue 

to integrate DL methods and this methodology contributed to a profusion of 

opportunities in the application and research of hydrological science. However, this 

review just focuses on the tendency of DL methods. More recently, another study 

(YANG et al., 2022) contributed to a systematic review of DL methods in the water 

subject. Still, in this case, the authors investigate water quality detection and 

monitoring in addition to water extraction. In conclusion, the research regarding water 

body detection and water quality monitoring has been realized separately, and linking 

the two can allow synoptic water quality monitoring. Moreover, the integration of 

remote sensing, machine learning, and DL methods has considerable potential to 

address water resource monitoring and management.  

Recently, a study (LI et al., 2022a) summarized the current common methods 

of water extraction based on optical and radar images. The methods such as the 

threshold method, support vector machine (SVM), decision tree, object-oriented 

extraction, and deep learning were evaluated in Landsat Collection 2 Level-2 images. 

The authors pointed a few issues that required further study, such as: (a) fusion of 

multisource remote sensing data to bring more possibilities for water body extraction, 

(b) efforts to solve water body mixed pixels issue, (c) complex optical properties and 

lack universality of the methods for inland water bodies, (d) lack of uniform evaluation 

standard for the results of water extraction, which is not conducive to a comparison 

between various methods and (e) a concentration of research in a small or local area 

may be improved with the increase of the available platforms of cloud computing 

technologies.  

Currently, research (LI et al., 2022b) summarized and analyzed the 

achievements, and perspectives for water body classification from high-resolution 

optical remote sensing imagery. They considered five challenges of the water bodies’ 

features and pointed five respective opportunities combined with advanced deep 

learning techniques. Further, they selected two representative benchmarks to employ 

for evaluating 10 typical approaches, and discussed their performance. The study 

affirmed that the water bodies from high-resolution images commonly have a variety 
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of shapes and sizes, wide and complex distribution scenes, boundaries winding, and 

exists a lack of data sets that can be used for supervised training. Despite of the 

challenging extracting the water body from high-resolution optical remote sensing 

images, the authors points that with the rapid development of computer vision 

techniques and remote sensing technologies the challenges can be overcome in the 

in the future. 

Although the mentioned studies analyze DL methods involving the theme of 

water, to date, no review study points out how the literature has dealt with the semantic 

segmentation of water bodies studying the quantitative aspects, answering questions 

such as: "Which types of images", "Which sensors", and "Which spatial resolution", 

"Which metrics ", "Which countries", and "Which journals" have been most used to 

investigate water body mapping. Therefore, our objective in this work is summarize the 

studies that worked with the extraction of water bodies in remote sensing images using 

deep learning methods and to answer the mentioned questions to obtain an overview 

of current research in this regard. 

 

2. METHOD 
We select Scopus and Web of Science (WOS) databases to realize the 

scientometric analysis of water body extraction in remote sensing images using deep 

learning. These databases have a significant number of publications, and journals with 

high-impact indices, and are very appreciated in the academic field. In both databases 

we used the advanced search with the query string: ALL = (TS = ((deep learning OR 

convolutional neural network OR CNN OR Deep convolutional neural networks OR 

DCNN OR Semantic Segmentation OR transformers) AND (mapping river OR water 

extraction OR body water mapping OR Water body detection OR river identification) 

AND (remote sensing OR multispectral imagery OR RGB OR aerial images OR orbital 

images OR drone OR UAV))). Scopus base search from 1960-2022 and WOS from 

1945-2022. Our study was actualized until June 2022.  

Although the mentioned studies analyze DL methods involving the theme of 

water, to date, no review study points out how the literature has dealt with the semantic 

segmentation of water bodies studying the quantitative aspects, answering questions 

such as: "Which types of images", "Which sensors", and "Which spatial resolution", 

"Which metrics ", "Which countries", and "Which journals" have been most used to 

investigate water body mapping. Therefore, our objective in this work is summarize the 
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studies that worked with the extraction of water bodies in remote sensing images using 

deep learning methods and to answer the mentioned questions to obtain an overview 

of current research in this regard. 

We found a total of 366 papers until June 2022, 118 from the Scopus and 248 

from WOS databases. Although the search string allows for an extensive range of data, 

it can increase the possibility of appearing data that is not exactly what we are aimed. 

An example is articles that used deep learning for agriculture, medicine, construction, 

and vegetation problems, which are different from the theme we were searching for. 

Therefore, we filter the result manually, organizing in tables, to better select the data 

(Figure 2). Filter 1 excludes duplicate articles and document types, which separates 

conference documents, books, book chapters, reviews, letters, and proceedings 

papers. Filter 2 selects all the articles with the water theme. From this selection, we 

manually reviewed the papers one by one to extract specific publication information 

such as year of publication, co-authorship, journal, and country. Filter 3 selects all the 

papers with the water and deep learning approach themes and shows the topics on 

water body subjects. Lastly, filter 4 selects only water body extraction topics with a 

deep learning approach, and analyzes data type, sensor platform, resolution, network, 

and metrics. Then, we discuss about the possible tendencies and lacunes from the 

mentioned analyses from articles of this last filter, obtaining an overview from literature.  

 

Figure 2- Filters and quantity of related articles. 

 
Fonte: Autor (2023). 
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3. RESULTS 
 

3.1 Temporal analysis and Research Countries 
 

The dataset analysis comes from filter 2, i.e., from the total of 366 documents, 

we eliminated duplicates, documents that are not published as journal articles, and 

themes distinct from the water theme, the remaining 116 documents. Figure 3 shows 

the number of these articles distributed over the years. The first publications found in 

the year 2017 studied sea-land segmentation and surface water mapping. This year’s 

highlight is the article titled “Surface Water Mapping by Deep Learning” by Isikdogan, 

Bovik and Passalacqua in the IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing. The authors proposed a fully convolutional neural 

network (FCN) called DeepWaterMap to separate water from land, snow, ice, clouds, 

and shadows in Landsat images. This initiative to use deep learning to map surface 

water surpasses the previous techniques such as modified normalized difference water 

index (MNDWI) and the traditional multilayer perceptron (MLP) approach, opening up 

ways to use the deep learning model to map water bodies. 

 

Figure 3- Temporal distribution of articles from 2017 to June 2022. 

 
Fonte: Autor (2023). 
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The temporal line (Figure 3) presents the number of articles climbing 

significantly over the years. Although the search for this study went up to June 2022, 

we plotted the results only for full years, therefore, from 2017 to 2021. From 2017 to 

2018 the number doubled and continues to rise in the coming years. Each year there 

is an average increase of more than 50% and from 2017 to 2021 there is an increase 

of almost 95%. This analysis demonstrates the exponential growth of studies related 

to water body extraction in remote sensing images using deep learning. 

Regarding the country’s publications, considering that some articles may have 

authors from one or more countries, for a better analysis, we separated the countries 

of the first authors (Figure 4). China is the country with massive publications (66%) 

compared with other countries. USA and India represent 7% each, and Germany with 

4%. The other countries represent less than 3% of papers published. These analysis 

results demonstrate that China is investing efforts and have a lot of interest in studies 

related to water and deep learning subjects. 

 

Figure 4- Percent of articles published per Country. 

 
Fonte: Autor (2023). 
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3.2 Influential Journals and Topics in the water body subject 
 

The 116 articles appeared in 46 different journals. Of all journals, a total of 32 

(70%) published only 1 article. For better visualization, we grouped journals with less 

than 5 publications (89%). Then, we selected the top 5 journals with the highest 

number of publications, that is, more than 5 publications, to be represented in Figure 

5. The journal with the highest number of publications, Remote Sensing, published 30 

articles in 4 years. Then the journal IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing with 13 publications, starting with the “Surface 

Water Mapping by Deep Learning” publication by Isikdogan, Bovik and Passalacqua 

cited previously. Afterward the IEEE Geoscience and Remote Sensing Letters (6), 

IEEE Access (5), and MDPI Sensors (5). Comparing the journals selected in the top 5 

(Figure 5), the remote sensing journal represents 51% of the total (59) articles 

published in this selection. Therefore, the journal Remote Sensing has received 

substantial attention from researchers and could become one of the most powerful 

drivers of deep learning and water research in the future. 

 

Figure 5- Top 5 influential journals. 

 
Fonte: Autor (2023). 
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Afterward, we applied Filter 3 in the previous dataset (116 articles) and 

selected articles that have studied water bodies using deep learning methods (87 

articles). At this moment, we excluded studies with machine learning, wetlands, and 

object recognition subjects. Still, there are different subtopics in water body subjects, 

such as flooding, water quality, specific lake investigation, and others. Thus, we 

separated the subtopics in the water theme and the topic of interest “water body 

extraction with methods of deep learning” appears in 47 articles (Filter 4) analyzed in 

this research’s next item.  

From the subtopics of the water body theme (Figure 6), the “flood monitoring” 

topic is present in 15 articles, being the second most studied topic. The topic “depth, 

level, or width monitoring” may be related to “flood monitoring”, however, we analyzed 

only the title name, thus totaling 9 articles on this topic. Despite the “Lake 

investigation”, “Water quality”, and “Other subjects” topics that have appeared in some 

documents, “Flood monitoring” has been of greater research interest in recent years. 

 

Figure 6- Top 5 main topics research in water body fields. 

 
Fonte: Autor (2023). 
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3.3 Detailed analysis of the extraction of the water body using deep learning 
methods  

 

Considering the 47 articles filtered (Filter 4) in the previous stage, the filter 

includes articles related to water body extraction using a deep learning method from 

2017 to June 2022, therefore, we analyzed each article seeing the following topics: 

sensor platform, image resolution, image type, metrics, and network architecture used. 

For the sensor platform analysis, we separate each platform, even though the article 

used more than one platform in the study. Although we analyzed 47 articles, the 

number of platforms found was more, due to some articles using more than one 

platform in the study. Just four articles adopted aerial platforms, all others used orbital 

platforms (Figure 7). Gaofen-2 was the most used orbital platform, appearing in 13 

articles, followed by Landsat and Sentinel, both, resulting in 10 articles each, and 

Gaofen-1 in six articles (Figure 7). The Gaofen series of satellites are Chinese high-

resolution Earth imaging satellites that are part of the China High-Resolution Earth 

Observation System (CHEOS) program. Although they are not freely available to the 

population, their wide use may be due to the vast majority of studies realized in China 

(item 3.2). Widely known and used in several studies, Landsat and Sentinel appears 

as the most used satellite on our planet. Both satellites can have the images acquired 

free of charge, through the US website Geological Survey and Copernicus (Earth 

Observation Program of the European Union), respectively. 
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  Figure 7- Platforms sensors for the article. 

 
Fonte: Autor (2023). 
 

Regarding the spatial resolution, 30 m was the resolution mostly explored in 

the databases, followed by 10 m resolution (Figure 8). This result can be explained 

due to the popularity of Landsat and Sentinel, as mentioned previously (Figure 7). 

Although Gaofen-2 was the most studied, this satellite has different resolutions, such 

as 3.24 m (multispectral), and 0.8 m (panchromatic), and was combined resulting in 

other resolutions, such as 2 m. In Landsat, for example, the studies work with just 30 

m resolution. 

Resolution values range from 0.2 m to 100 m. We divided the spatial 

resolutions into: above 5 m, and less than 5 m, which means, medium resolution and 

high spatial resolution. Although images with more than 5 m were the most explored 

(54%), compared to all images with less than 5 m, they represent 46% of all articles 

analyzed, demonstrating that high spatial resolution is almost equivalent to medium-

resolution images studied. Among the submeter images (less than 1 m), which 

represent 23% of the analyzed articles, the resolutions of 0.5 m and 0.8 m were the 

most investigated. Despite the submeter representing 1/4 of the proportion of articles 

analyzed, with technological advances and the increase in the availability of high-

resolution images, this scenario may change over the years. Another visual 

representation (Figure 9), demonstrates the temporal distribution of the spatial 
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resolutions. We note that in 2022 high spatial resolution overcome the medium spatial 

resolution in the articles analyzed and may indicate a tendency to explore high-spatial 

images in the next years. 

 

   Figure 8- Image spatial resolution of the studies. 

 
    Fonte: Autor (2023). 

 

Figure 9- Distribution of image spatial resolution over the years. 

 
     Fonte: Autor (2023). 
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The data type investigated in the studies was multispectral data, RGB data, 

both multispectral and RGB data, and Synthetic Aperture Radar (SAR) data. Many 

works benefit from the multispectral data, because there may be greater reflectance in 

the length of the infrared spectrum, especially if the water quality changes. Although 

most works use multispectral images (55%), some sensors capture only the RGB 

bands, being the second most used type of data by scientific studies (Figure 10).  

 

Figure 10- Data type percent. 

 
Fonte: Autor (2023). 

 

 About 80% of the articles analyzed used new network architectures based on 

convolutional neural networks (CNN) or modified deep neural networks to extract water 

bodies in remote sensing images. All articles used different methods and neural 

networks to compare the proposed method. Most compared it with traditional deep 

neural networks, machine learning methods (Support Vector Machine - SVM and 

Random Forest - RF), and threshold-based methods such as NDWI (Normalized 

Difference Water Index) and MNDWI (Modified Normalized Difference Water Index). 

To aid the analysis, we selected the 5 main deep neural network architectures adopted 

in the articles studied (Figure 11). The Unet (20), DeepLabV3+ (16), and FCN (14) 

architectures were widely used, presenting a slight difference in terms of the number 

of times used in the articles studied. DeepUnet and SegNet, cited in 7 articles each, 
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were among the top 5 CNNs used, with just under half usage compared to the other 

architectures. Therefore, the most used CNN networks to extract bodies of water from 

SR images in the last 5 years were Unet, DeepLabV3+, and FCN. 

 

       Figure 11- Top 5 deep learning methods. 

 
Fonte: Autor (2023). 

 

All the methods are evaluated with metrics that are widely adopted in most 

articles. Metrics are calculated from the confusion matrix and the classified pixels are 

compared to the ground truth. From all pixels correctly predicted to the class of interest, 

it is the true positive (TP); for all correctly predicted to the other class (background), it 

is the true negative (TN). For all pixels falsely predicted to the class of interest, it is a 

false positive (FP), and the missing and incoming label is the false negative (FN). All 

the metrics are calculated as the equations below (DUAN et al., 2021): 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 

(1) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 

(2) 

𝐹𝐹1 − 𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
2𝑇𝑇𝑃𝑃

2𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹
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(3) 

𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑅𝑅𝑃𝑃𝐴𝐴 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹
 

(4) 

𝐼𝐼𝑃𝑃𝐼𝐼 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝑃𝑃
 

(5) 

𝑀𝑀𝐼𝐼𝑃𝑃𝐼𝐼 =
1

𝑃𝑃 + 1
�
𝑛𝑛

𝑖𝑖=0

𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹

 

(6) 

 

The mostly metrics used were: F1-Score, Precision (P), Recall (R), Mean 

Intersection over Union (MIoU), Overall Accuracy (OA), and Intersection over Union 

(IoU) respective (Figure 12). Other metrics were used, for example, Pixel Accuracy 

(PA), Kappa Coefficient (Kappa), Commission Error, Omission Error, Mean Pixel 

Accuracy (MPA), Dice Coefficient Loss, Producer’s Accuracy, User’s Accuracy, 

Jaccard Loss, Boundary Overall Accuracy (BOA), Edge Overall Accuracy (EOA), 

Specificity and Mathews Correlation Coefficient (MCC). However, were used just under 

10 times, thus, we focus on the top six metrics mostly used in the articles. 

 

       Figure 12- Most used metrics. 

 
Fonte: Autor (2023). 
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4. DISCUSSION 
 

In the last 5 years, the subject of water bodies extraction has been studied 

mostly from multispectral images, with more than 5 m of resolution images. The 

method most used was CNN architecture, mainly with a proposed or modified 

architecture, then using Unet, and DeepLabV3+. In this way, a specific approach using 

RGB images in HRRS (high-resolution remote sensing) images to extract water bodies 

with deep learning methods has been little explored in the last few years. A study 

(MIAO et al., 2018) proposed a segmentation network named restricted receptive field 

deconvolution network (RRF DeconvNet) to extract water bodies automatically. To 

demonstrate their method, they adopted a high-resolution RGB dataset from Google 

Earth images. The images were RGB pan-sharpened with 0.5 m resolution and 

showed lakes, reservoirs, rivers, ponds, paddies, and ditches in the water-body class. 

They achieved 96.5% of accuracy in the referred water segmentation, however, they 

used just one metric to evaluate the segmentation. Overall Accuracy is widely used for 

this task, however, when the dataset has imbalance class problems, like segmenting 

a minority class (water) from an image, this metric may not be the best to evaluate the 

performance network. Because this metric is greatly affected by the proportion of the 

majority class, in cases of class imbalance, it is important to employ an evaluation 

metric that is appropriate to the problem, which, in this case, can favor the minority 

class (HOSSIN; SULAIMAN, 2015). 

Recently, Wang et al. (2021), proposed the MobileNetV2 for water body 

extraction in multisensor high-resolution remote sensing images. The method was 

performed in RGB images from the sensors GaoFen-2 (GF-2), WorldView-2, and UAV 

orthoimages. GF-2 and WoldView-2 orbital platforms used pan-sharpened RGB 

images with 1.0 m and 0.5 m resolution, respectively, and the UAV ortho images with 

0.2 m resolution. The experiment was compared with other methods: support vector 

machine (SVM), random forest (RF), and U-Net. F1-Score for the proposed method 

achieved the best metrics, obtaining 75% for GF-2, 86% for Worldview-2, and 98% for 

UAV. Despite the excellent result presented in the image provided by the UAV, this 

dataset contained large lakes and dams. Unlike the other sensors, in the UAV image, 

there were no narrow rivers, at least visually, in the images presented in the work. 

Another conclusion is that training with a combination of lower and higher spatial 

resolution images can be beneficial, however, using just lower resolution imagery can 
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be limited. Despite obtaining good results with the increase in spatial resolution, the 

requirement to improve the proposed network for the extraction of mixed and small-

area water bodies was pointed out. 

Another work (DANG; LI, 2021) proposed a multiscale residual network 

(MSResNet) that uses self-supervised learning (SSL) for water-body detection. The 

method was performed in RGB images from the 2020 Gaofen Challenge water-body 

segmentation dataset with 0.5 m resolution, and multispectral images from the GID 

dataset with 4 m resolution. The mean intersection over union (MIoU), and the 

frequency weighted intersection over union (FWIoU) were respectively 85.82%, and 

90.88% for RGB images and 94.94%, and 95.08% for multispectral images. Despite 

the water body being labeled to have a variety like lakes, ponds, rivers, paddies, and 

seas, the datasets don’t present complex spectral mixtures like sedimentation and 

sinuosity which may bring more difficulty to the task of segmentation. On the other 

hand, a study (ZHANG et al., 2021) designed a specific network to deal with complex 

spectral mixtures, a multi-feature extraction, and a combination module (MECNet). The 

network was assembled to reach a rich feature representation, extracting the complete 

target information from the local space, larger space, and between-channel 

relationships. In addition, they adopted a multi-scale prediction fusion module and 

applied an encoder-decoder semantic feature fusion module to promote fusion effects. 

The method was evaluated with aerial (0.2 m) images, and satellite (0.5 m) images 

from GF-2, both with RGB bands. The method proposed was compared with U-Net, 

RefineNet, DeeplabV3+, DANet, and CascadePS and performed better than these 

methods. The results were around 90% for IoU, with 90,64% for aerial and 90.80% for 

satellite images. However, the method was designed to focus on the global information 

of the feature maps, which turns in less attention to the spatial relationship between 

feature maps. Despite the study working with high spatial resolution RGB images using 

deep learning to extract bodies of water with complex spectral variations, challenges 

such as extracting small rivers from the image, for example, were not addressed. 

More recently, an investigation (HU et al., 2022) proposed a network with multi-

scale feature aggregation for water segmentation. The network used ResNet in 

downsampling feature extraction to obtain rich context information, aggregate spatial 

information, and semantic information. Furthermore, the multi-branch aggregation 

module was used for two-channel information communication to provide rich pixel 

information for the recovery of up-sampling information. The experiment was 
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performed in Landsat-8 and Google Earth (QuickBird and Earth Sat) using 30 m, 1m, 

and 0.6 m image resolution. Additionally, the authors used cloud and cloud shadow 

datasets from Google Earth and LandCover datasets with 0.25 m and 0.50 m resolution 

to test whether the algorithm has the same segmentation performance in different 

tasks and generalized the assignment. In the first test, the authors compared 11 

networks and achieved better performance with an MIoU of 95.94 %. For the cloud 

dataset, the proposed method has better results compared with 5 different networks 

and achieves 87.28% MIoU. This method accomplished 92.89% MIoU from the 

LandCover dataset, overcoming all 7 networks compared. The method accomplishes 

these results even with complex backgrounds and small rivers. Despite efforts to obtain 

rich context information, according to the authors, there are still points to be improved, 

for example, improving the number of parameters, reducing the weight of the model, 

relieving the training pressure, optimizing the backbone network, changing the 

convolution kernel or the convolution type, and even continuing to select a lighter 

network. 

Another recent research (GAUTAM; SINGHAI, 2022), proposed a modified 

convolution neural network (MCNN) for water body extraction, with attention in achieve 

accurate water boundaries. For this proposal, the authors modified the raw image with 

RGB-HIS conversion and enhancement, utilizing the double plateaus histogram 

equalization (DPHE) algorithm. Then, morphological operations combining erosion 

and dilation are used and the necessary features are selected from the extracted 

features using the chaotic forest optimization algorithm (CFOA). The classification was 

done using MCNN, and, the segmentation process was done using the cosine 

similarity-based watershed segmentation algorithm (CSWS). To validate the method 

(MCNN) in the classification step, they compared with NN (neural network), CNN 

(convolutional neural network), ANFIS (adaptive neuro-fuzzy interference system), 

DNN (deep neural network), ENN (Elman neural network), and RNN (recurrent neural 

network) achieving higher metric values of sensitivity, specificity, accuracy, precision, 

and recall over the mentioned existing deep neural network classifiers. In the 

segmentation step, they compared CSWS with active contour (AC), K-means (KM), 

fuzzy C-means (FCM), and region growing (RG) methods based on the 

aforementioned evaluation metrics. The results demonstrate that the CSWS method 

gives accurate water boundary delineation. However, the proposed methodology can 

be enhanced by considering more advanced algorithms. In addition, despite this 
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method focusing on water boundaries which can bring better water segmentation, the 

study doesn’t focus on and evaluate small water bodies. 

A further recent survey (WANG et al., 2022) proposed a water bodies 

extraction method (SADA-Net) for high-resolution remote sensing images. The authors 

consider the method's multiscale information, context dependence, and shape 

features. For this, the network framework integrates three components: shape feature 

optimization (SFO), atrous spatial pyramid pooling (ASPP), and dual attention (DA) 

modules. The experiment was conducted in RGB and multispectral images from GID 

(Gaofen Image Dataset) and compared with SegNet, LinkNet, DeeplabV3+, Attention 

U-Net, MECNet, and MSResNet methods. The results were better for SADA-Net with 

F1-Score 88.57% in RGB images and 96.14% in multispectral images. Regardless of 

the study mentioned processing with small water bodies, the work mainly refers to 

artificial ponds. Thus, specific small water bodies like narrow rivers were not 

considered. 

The analyzed studies have shown advances in the semantic segmentation of 

rivers in high spatial resolution images. However, even exploring different modules and 

modifications in deep neural networks to achieve better results, studies still have 

difficulty in segmenting small rivers (narrows). This is an important challenge to be 

overcome, which can be explored through specific studies for narrow rivers, and also 

through other DL approaches. 

 

5. CONCLUSION 
 

This study aimed to provide a scientometric analysis of water body semantic 

segmentation in remote sensing images with deep learning methods. Water body 

extraction with a deep learning approach has been a lot of attention and has been a 

hot topic in the last 5 years. The primary studies started in 2017 and are increasing 

widely over the years until June 2022. Multispectral images have greater scope for this 

task, however, RGB images have also been used and, they can open paths for new 

analysis. Although most studies investigate images with medium-spatial resolution 

over the last years, high spatial resolution have gained more attention in the last year 

(2022). Deep learning methods have been mainly updated or created a new proposal 

based on CNN architecture for the task of water body segmentation. A lot of studies 

proposed new improving methods to achieve better accuracies to segment the water 
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body. However, all of the studies indicate the difficulty to segment water complex 

features, such as sedimented water, spectral mixtures, and mainly small water bodies. 

Regardless of whether the studies have better results with new methods, small bodies 

are still a barrier to being passed.  Therefore, remaining the lacune to investigate the 

water body extraction from HHRS RGB images using deep learning and explore other 

deep learning approaches, such as ViT-based, to accurately segment narrow rivers. 
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CAPÍTULO 2 - MAPPING LARGE AND NARROW RIVERS USING SEMANTIC 
SEGMENTATION IN HIGH SPATIAL RESOLUTION RGB IMAGES 

 

Abstract: Accurate mapping of water resources is essential for planning the 

sustainable use of this important resource. Deep learning (DL) methods for semantic 

segmentation tasks based on the convolutional neural network (CNN) architectures, to 

deal with remote sensing images have been explored to map rivers. However, mapping 

rivers with high accuracy is a difficult task, mainly due to the complex scenarios of a 

water body, such as size variations and pixel mixtures, usually detected in high-

resolution RGB images. Although there are studies with new DL methods to map water 

bodies, there are still difficulties to segment narrow rivers. In this way, there is still no 

in-depth analysis of the performance of semantic segmentation networks in mapping 

large (over a width of 10 m) and narrow rivers (a width less than 10 m). An approach 

that points out the differences between the performance of CNNs for semantic 

segmentation of large and narrow rivers can contribute to advances in river mapping. 

In this context, we propose an approach based on DL methods for semantic 

segmentation of large and narrow rivers in high spatial resolution RGB images. We 

conducted experiments applying different CNNs (DeepLabV3+, Unet, PSPNet) for 

mapping large rivers (width over 10 m) and narrow rivers (width of fewer than 10 m). 

The results showed that the CNN performance is different depending on the 

characteristics of this river, since narrower rivers tend to have different characteristics 

from larger water bodies. Training with the combination of large rivers and narrow rivers 

outcomes in better effects for both river widths. All the CNNs performed better in large 

river segmentation, with the best F1-Score 97.43% presented by UNet. However, there 

is a decrease in all CNNs performances for narrow rivers segmentation. This finding 

reinforces the difficulty in mapping rivers smaller than 10 m in RGB high-resolution 

images and opens perspectives for defining strategies to deal with this specific type of 

river. A CNN that can map narrow rivers accurately will have a good chance of mapping 

large rivers accurately. Future studies may explore the CNNs in multisensor or 

multitemporal datasets, and explore other new architectures, such as Transformer-

based architectures. 

 
Keywords: Deep Learning mapping; Water resources management; Environmental 
planning. 
 



49 
 

Resumo: O mapeamento preciso dos recursos hídricos é essencial para o 

planejamento do uso sustentável desse importante recurso. Métodos de aprendizado 

profundo (DL) para tarefas de segmentação semântica baseados em arquiteturas de 

redes neurais de convolução (CNN) para lidar com imagens de sensoriamento remoto 

foram explorados para mapear rios. No entanto, mapear rios com alta precisão é uma 

tarefa difícil, principalmente devido aos cenários complexos de um corpo d'água, como 

variações de tamanho e misturas de pixels, geralmente detectados em imagens RGB 

de alta resolução. Embora existam estudos com novos métodos de DL para mapear 

corpos d'água, ainda existem dificuldades para segmentar rios estreitos. Dessa forma, 

ainda não há uma análise aprofundada do desempenho das redes de segmentação 

semântica no mapeamento de rios largos (largura superior a 10 metros) e estreitos 

(largura inferior a 10 metros). Uma abordagem que aponte as diferenças entre o 

desempenho das CNNs para segmentação semântica de rios grandes e estreitos 

pode contribuir para possíveis avanços no mapeamento de rios. Neste contexto, 

propomos uma abordagem baseada em métodos DL para segmentação semântica de 

rios grandes e estreitos em imagens RGB de alta resolução espacial. Conduzimos 

experimentos aplicando diferentes CNNs (DeepLabV3+, Unet, PSPNet) para mapear 

rios grandes (largura superior a 10 metros) e rios estreitos (largura inferior a 10 

metros). Os resultados mostraram que o desempenho da CNN é modificado de acordo 

com a largura do rio. O treinamento com a combinação de rios largos e rios estreitos 

resulta em melhores efeitos para ambas as larguras dos rios. Todas as CNNs tiveram 

melhor desempenho na segmentação de rios largos, com o melhor F1-Score 97,43% 

apresentado pela UNet. No entanto, há uma queda no desempenho de todas as CNNs 

para a segmentação de rios estreitos. Essa constatação reforça a dificuldade de 

mapear rios menores que 10 metros em imagens RGB de alta resolução e abre 

perspectivas para a definição de estratégias para lidar com esse tipo específico de rio. 

Uma CNN que pode mapear rios estreitos com precisão terá uma boa chance de 

mapear rios largos com precisão. Estudos futuros podem explorar as CNNs em 

conjuntos de dados multisensor ou multitemporais e explorar outras novas 

arquiteturas, como arquiteturas baseadas em Transformer. 

 

Palavras-chave: Mapeamento de Deep Learning; Gestão de recursos hídricos; 

Planejamento Ambiental. 

 



50 
 

1. INTRODUCTION 
 

Mapping water resources is essential for environmental planning. Obtaining 

accurate information about this resource can assist in several issues, such as 

biodiversity conservation, management of natural disasters, and strategies to minimize 

climate change (JIANG et al., 2018). Additionally, mapping water resources favor river 

monitoring as it can point out areas to be preserved and the spatial distribution of rivers, 

which can assist water management and water supply. However, mapping rivers is 

challenging, especially when dealing with large geographic areas that may be 

composed of rivers with different characteristics such as shape, composition, spectral 

signature, and size. 

Remote sensing images have supported several environmental tasks 

development, such as those related to monitoring river channel dynamics (LANGAT; 

KUMAR; KOECH, 2019; DRUCE et al., 2021; CHEN et al., 2022), river flow 

management (SAMBOKO et al., 2020), river discharge estimation (KEBEDE et al., 

2020), river level monitoring (MISHRA; PANT, 2020; KIM et al., 2022), flood hazard 

(NOGUEIRA et al., 2018; JANIZADEH et al., 2021; KALANTAR et al., 2021; CHENG 

et al., 2022), water quality estimation (YOTOVA et al., 2021; SUN et al., 2022), and 

anthropogenic impacts in ecological status (VIGIAK et al., 2021). In recent years, many 

of these tasks have been performed using high spatial resolution images because they 

allow identifying river features in large-scale detail. The literature has presented many 

attempts using different methods to map rivers using images of high spatial resolution 

(PEKEL et al., 2016; JIANG et al., 2018; CHEN et al., 2018; JIN et al., 2021; ZHENG; 

CHENG, 2021; MORADKHANI; FATHI, 2022). One of the primary methods to map 

water bodies is based on spectral characteristics, which consists of the single-band 

thresholds (SHIH,1985; ZHANG et al., 2017) and the multi-band thresholds. The multi-

band thresholds use the spectral relationship method (DU; ZHOU, 1998), and the 

water index method (MCFEETERS, 1996; ROGERS; KEARNEY, 2004; XU, 2006; 

WANG et al., 2018) adopts band operation to extract information about water, 

benefiting from the water spectral signature.  

The most common algorithm used to predict water bodies’ class in remote 

sensing images are supervised classifiers, which have to analyze training samples to 

complete the task. For example, commonly applied algorithms include support vector 

machine (SVM), decision tree (DT), random forest (RF), and neural networks (NNs) 
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(HUANG et al., 2015; BANGIRA et al., 2019; ACHARYA; SUBEDI; LEE, 2019, LU et 

al., 2021; OLIVER et al., 2022). Methods that integrate the threshold approach and 

machine learning were used for mapping water bodies, but they have some gaps and 

problems that the algorithms cannot solve. In the threshold-based method the 

performance decline substantially when conducted with narrow and sedimented water 

bodies. These features are complex because of the spectral signature and it’s difficult 

to define thresholds and derive from the spectral differences. Although machine 

learning-based methods have come to improve water classification, these methods 

have difficulty obtaining full context information from the image. For this reason, the 

algorithm loses a lot of useful image information and is easily affected by noise, 

declining the performance of the mapping task (KANG et al., 2021). Therefore, to fill 

these gaps, deep learning methods are explored. Representing a subclass of machine 

learning, deep learning algorithms refer to the state-of-the-art approach for extracting 

information in remote sensing images. Deep learning makes a hierarchical 

representation of the data, allowing greater learning resources, greater performance, 

and more accuracy than more common methods (LECUN; BENGIO; HINTON, 2015; 

GHAMISI et al. 2017; BADRINARAYANAN; KENDALL; CIPOLLA, 2017).  

Although deep neural networks require greater computational power and high 

demand for labeled data, they can achieve impressive performances in several tasks, 

such as image classification (KRIZHEVSKY; SUTSKEVER; HINTON, 2017; 

NOGUEIRA; PENATTI; DOS SANTOS, 2017; JAMALI et al., 2021), object detection 

(NOGUEIRA et al. 2019a; OSCO et al. 2020), semantic segmentation 

(BADRINARAYANAN; KENDALL; CIPOLLA, 2017; NOGUEIRA et al. 2019b; HAO; 

ZHOU; GUO, 2020), and instance segmentation (BAI; URTASUN, 2017; HAFIZ; 

BHAT, 2020). Different from image classification which provides a single label for the 

class(s) of the entire image, semantic segmentation performs pixel-level labeling, 

categorizing each pixel into a class of information. An instance segmentation task 

besides categorizing each pixel also detects and delineates each object of interest in 

the image (MINAEE et al. 2021).  

The automatic river mapping from high-resolution spatial remotely sensed 

images has gained attention in both remote sensing and computer vision fields, and 

deep learning-based semantic segmentation methods, such as convolutional neural 

networks (CNN), have been applied to extracting rivers in remote sensing images in 

recent years (ISIKDOGAN; BOVIK; PASSALACQUA, 2017; CHEN et al. 2018; WEI et 
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al. 2020; GUO et al., 2020; TAMBE; TALBAR; CHAVAN, 2021; VERMA et al., 2021; 

THAYAMMAL et al., 2022; GAO et al., 2022). Recently, studies that explore water body 

extraction in high-resolution RGB images have gained attention (MIAO et al., 2018; 

WANG et al., 2021; DANG; LI, 2021; GAUTAM; SINGHAI, 2022; HU et al., 2022; 

ZHANG; LI; HUA, 2022).  

A recent investigation (KANG et al., 2021) used high-resolution optical remote 

sensing images to propose a multiscale context extractor network (MSCENet) to 

delineate water bodies. The proposed method demonstrates a performance of 94.2% 

(F1-Score) for aerial RGB images and 95.35% for multispectral satellite images. 

However, the mentioned method has problems with the misclassification of shadows 

and trees, and the incomplete extraction of narrow rivers. Another research (ZHANG 

et al., 2021) proposed a multi-feature extraction and a combination module (MECNet) 

to extract water bodies with complex spectral mixtures. The combination module 

involves the multi-scale prediction fusion module and an encoder-decoder semantic 

feature fusion module (DSFF). The proposed method was evaluated with RGB aerial 

images (0.2 m) and RGB satellite images (0.5 m) and achieved around 90% of IoU. 

However, the (DSFF) misses the influence of the spatial relationship between feature 

maps, and the method still has difficulty in segmenting very narrow rivers. More 

recently, a study (WANG et al., 2022), proposed a method (SADA-Net) that combines 

components to extract multiscale information, context dependence, and shape 

features of water bodies. The method focuses on water body extraction from high-

resolution remote sensing images, including both multispectral and RGB high-

resolution images in the experiment. The proposed method achieves an of F1-Score 

88.57% for RGB images and an F1-Score of 96.14% for multispectral images. 

However, only artificial ponds were considered small water bodies, which means that 

specific narrow rivers were not mentioned in the dataset.  

As aforementioned, there are several attempts to create efficient CNNs for 

segmenting rivers in remote sensing images. However, there is no study that analyses 

deeply and verified qualitatively and quantitatively the performance of CNNs in specific 

river widths, such as large and narrow rivers. In addition, in mentioned studies, the 

dimension of narrow rivers is not known, for example, if the rivers have a width of fewer 

than 10 m, even in a high-resolution image, they can be considered narrow and more 

challenging for segmentation. Remarkably, dealing with narrow rivers is very difficult 

and demanding. Therefore, there is a gap in the literature regarding the comparison of 
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the performance of CNNs in the segmentation of large (over 10 m width) and narrow 

rivers (fewer 10 m width). A comparative approach like this can make it possible to 

verify more precisely which river size the network presents ease or difficulty in river 

mapping. In this way, it is easier to specifically address the gaps that the network 

presents. 

The challenge is intensified when we have only the RGB bands to map rivers, 

because there is lower contrast between the target "water" and the background, 

different of when the infrared bands (near and medium) are use. Another challenge is 

the variety of river features in sizes different. Large rivers usually have more 

homogeneous color, size, shape, and spectral features. On the other hand, narrow 

rivers have sinuosity, sedimentation, and mixture pixels, which usually turn these 

features more challenging to segment. In this regard, an approach that investigates 

the performance of CNNs to map rivers of different sizes in RGB images of high spatial 

resolution is not evaluated up to the writing moment. This approach may consist of 

advancement in mapping rivers using a low-cost strategy that provides information at 

a high level of detail for this environmental feature. 

We tested different CNNs and proposed an approach for mapping different 

sizes of rivers (large rivers and narrow rivers) in high spatial resolution RGB aerial 

images. The main contribution of this work is to present the performance of CNNs to 

map large and narrow rivers in RGB images, and make available a low-cost and 

accurate strategy to extract river features in RGB images. This consists of valuable 

information for the planning and management of water resources strategies. In 

addition, due to feature annotations in images being time consuming, troublesome, 

and hard-task, as another contribution of this study, we make available our dataset 

publicly1. Thus, deep-learning approaches can be evaluated in the future using the 

same dataset adopted here. 

 

2. MATERIALS AND METHOD 
 

We divided the method into four main stages (Figure 13). Initially, we labeled 

the rivers (a) in the RGB aerial images conceded by the Mapeia-SP project. Following 

this, we split the labeled data into training, validation, and testing datasets. In a 

                                            
1 https://github.com/mayarafaita/Large-Narrow_River.git  

https://github.com/mayarafaita/Large-Narrow_River.git
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computational environment, we applied CNNs to train and test the images of large and 

narrow rivers. Then, we performed the evaluation (c) of the CNNs and compared them 

against each other. Lastly, we apply the best-trained CNN in a larger region (d), 

evaluate, and confirm if the best CNN could infer in a larger area. Details regarding 

these stages are described in the following subsections. 

 

Figure 13- The main steps of the method are summarized in a flowchart. 

 
Fonte: Autor (2023). 

 

2.1 Data labeling and split 
 

We use aerial images with high spatial resolution from the Mapeia-SP project 

in Brazil. This project collected RGB aerial photographs of the entire state of São Paulo 

with a Ground Sample Distance (GSD) of 0.45 m. These images were orthorectified, 

i.e., acquired the characteristics of a map (orthophotos), and resembled 1 m of 

resolution. We selected as the study area a watershed with approximately 12,000 km² 

in the west of São Paulo state. Inside this area, we selected 6 orthophotos distributed 

throughout this region as experimental areas (Figure 14). 
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Figure 14- Study area. 

 
Fonte: Autor (2023). 

 

To compose the training, validation, and testing data, we labeled the river’s 

features in the RGB images. We performed this process by visual interpretation of the 

images using GIS and classified the labels as 1 for “river” and 2 for “no-river”. The 

dataset is composed of different river characteristics including shapes, sizes, and 

spectral signatures. In the study area, we can detect large rivers, narrow rivers and 

lakes, sinuous and straight rivers, and limpid and sedimented rivers (Figure 15). These 

different characteristics can be confusing due to the wide variety of river samples, 

composing a complex and challenging dataset. 

We conduct the experiment separating rivers with a width greater than 10 m 

(large rivers) and a width less than 10 m (narrow rivers) and evaluate the performance 

of deep semantic segmentation networks in the function of river size variations. The 

large river dataset has a much larger number of pixels than the small river (narrow 

rivers) dataset, which causes misleading class balancing with the background. The 

impact of class imbalance is detrimental to the performance of CNNs and this influence 

increases according to the scale of a task (BUDA; MAKI; MAZUROWSKI, 2018). To 
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deal with the class imbalance problem and save processing time, we conduct 3 initial 

experiments of undersampling adopting images that cover up to 50 m beyond the 

distance from the river's margin (Figure 15). 

 

Figure 15- Examples of rivers that composed the dataset. 

 
Fonte: Autor (2023). 

 

From a total of 6 orthophotos with 13,436 x 14,409 pixels, we defined 5 

experiments using different approaches (Table 1 and Figure 16). In experiments 1 and 

2 we used 1 orthophoto for training and the other 5 orthophotos for testing the model 

(Table 1). In 3rd experiment, we combined large rivers and narrow rivers in a mosaic 

that was composed of 2 orthophotos for training and validation and the other 4 
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orthophotos to test the model’s performance (Table 1). The training and validation 

stage was performed using non-overlapping patches of 256 x 256 pixels split into 70% 

for training and 30% for validation. 
 

Table 1- Distribution of train and test datasets. 

 Experiment 1 Experiment 2 Experiment 3 

Train Orthophoto 1 (large) Orthophoto 4 (narrow) 
Mosaic: 

Orthophoto 1 (large) 
Orthophoto 4 (narrow) 

Number of 
patches 

(256x256) 

381 
(70% training; 30% 

validation) 

434 
(70% training; 30% 

validation) 

826 
(70% training; 30% validation) 

Test 

Orthophoto 2 (large) 
Orthophoto 3 (large) 

Orthophoto 4 (narrow) 
Orthophoto 5 (narrow) 
Orthophoto 6 (narrow) 

Orthophoto 1 (large) 
Orthophoto 2 (large) 
Orthophoto 3 (large) 

Orthophoto 5 (narrow) 
Orthophoto 6 (narrow) 

Orthophoto 2 (large) 
Orthophoto 3 (large) 

Orthophoto 5 (narrow) 
Orthophoto 6 (narrow) 

Fonte: Autor (2023). 
 

    Figure 16- Flowchart of the experiments. 

 
Fonte: Autor (2023). 

 

We conduct experiments 4 and 5 (Figure 16), to verify the model's 

performance and its capability to map rivers in entire orthophotos. In experiment 4, we 

intend to assess the learning ability of the previously trained models to map rivers in 

the entire orthophoto. We proposed to test whether the model trained in a small area 

(orthophoto with buffer 50m) can segment rivers in a larger size area (entire 

orthophoto). Thereunto, we selected the best model for experiments 1, 2, and 3. Then, 
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we applied that model to a larger region, the entire orthophotos 2, 3, 5, and 6. Then 

we organize another training and testing set (experiment 5) using a different orthophoto 

size. Considering the complex geographical environment of the background of the 

dataset, we intend to test whether adding counterexamples, such as more image 

context (background), to the model can improve the performance. Thus, we considered 

an area of 7 km x 7 km (1/4 of the entire image) in orthophotos 1 and 4 and used this 

dataset for training. We applied the model with the best performance found in previous 

experiments (1, 2, and 3) for training this new dataset. Following this, we tested this 

newly trained model (experiment 5) in the entire orthophotos (ortho 2, 3, 5, and 6). 

 

2.2 Deep Semantic Segmentation networks and Experimental Setup 
 

In the task of mapping water body features in RGB images, we worked with 

deep semantic segmentation networks architectures based on CNN, such as U-Net 

(RONNEBERGER et al., 2015), Pyramid Scene Parsing Network (PSPNet) (ZHAO et 

al., 2017), and DeepLabV3 + (CHEN et al., 2017). These models are implemented on 

the ESRI ArcGIS Pro 2.8. The workstation for carrying out the experiments consists of 

a 64-bit Intel i7-6500U@2.50GHz CPU, with 8 GB memory. 

2.2.1 U-Net 

 

U-Net (RONNEBERGER et al., 2015) was one of the pioneer networks to 

propose encoder-decoder architectures to accomplish semantic segmentation tasks. 

In the U-Net structure (Figure 17), the encoder has a typical architecture of a 

convolutional neural network that extracts the features and with the max-pooling 

operation generates an initial coarse prediction map. Whereas, the decoder is usually 

composed of convolution, deconvolution (ZEILER; FERGUS, 2014), and/or unpooling 

layers (GOODFELLOW et al., 2016). The decoder is responsible for further processing 

the initial prediction map, increasing its spatial resolution gradually, and generating the 

final prediction. Normally, the decoder has the same number of layers as the encode, 

but it replaces some of the operations with their counterparts (i.e., convolution with 

deconvolution, pooling with unpooling, etc). In summary, the decoder can be perceived 

as a mirrored and symmetrical version of the encoder (Figure 17). In this work, the U-

Net architecture from ArcGIS Pro constructs a dynamic U-Net from a backbone pre-
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trained on ImageNet and infers the intermediate sizes automatically. For U-Net, we 

settled the maximum of epochs of 20, batch size of 8, and class balancing with “true”, 

in which the cross-entropy loss inverse is balanced to the frequency of pixels per class. 

The learning rate (default) is the optimal rate extracted from the learning curve during 

the training. The backbone is resnet-34 (pre-trained in Imagenet Dataset) and the 

early-stopping mechanism is checked to stop the training model when the model is no 

longer improving. 

 

      Figure 17- U-net architecture. 

 
Fonte: Ronneberger et al. (2015). 

 

2.2.2 PSPNet 

 

The winner of the ImageNet Scene Parsing Challenge 2016, the PSPNet 

(ZHAO et al., 2017) is an improvement from the Fully Convolutional Network (FCN) 

(LONG et al., 2015). PSPNet differential in that the network aimed to improve the 

performance of complex-scene parsing, fixing issues like mismatched relationships, 

confusion categories, and inconspicuous classes (ZHAO et al., 2017). To realize this, 

they built the pyramid pooling module (Figure 18c). Firstly, the input image has the 

features extracted through a CNN model. Then, the features were fused under four 

different pyramid scales, in the pyramid pooling module. In this module, global and 

local features are extracted through four parallel pooling features and the output is a 

feature map with variate sizes. Subsequently, a layer with 1 x 1 convolution is used to 
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maintain the weight of the global feature, reducing the dimension of context 

representation to 1/4 of the original. Following, the size is restorage through bilinear 

interpolation and connected with the feature map before polling. Lastly, there is a 

convolutional layer and the final prediction is generated. For the PSPNEt model, we 

settled as U-Net (max. of epochs of 20, batch size of 8, class balancing with “true”, 

learning rate default, backbone resnet-34, and early-stopping mechanism checked). In 

addition, we used the default pyramid sizes configure from the software, which settles 

the number and size of convolutions layers as 1, 2, 3, and 6 to the different subregions. 

 

Figure 18- PSPNet architecture. 

 
Fonte: Zhao et al. (2017). 

2.2.3 DeepLabV3+ 

 

The DeepLabV3+ network (Figure 19) is proposed by Chen et al. (2017). 

According to the authors, the network uses a combination of deep convolutional neural 

networks and fully-connected conditional random fields to achieve semantically 

accurate predictions and detailed segmentation maps. The differential in this network 

is first used of dilated convolutional layers. To solve the task of dense feature 

extraction, they applied atrous convolution with upsampled filters. In addition, they 

complement the network with Atrous Spatial Pyramid Pooling (ASPP). This special 

module allows the model to absorb context images in multi-scale dimensions. Capable 

to establish the receptive field without downsampling the input. In our work, we settled 

the maximum of epochs of 30, batch size of 8, class balancing with “true”, learning rate 

default, and backbone resnet-101. 

 

 



61 
 

Figure 19- DeepLabV3+ architecture. 

 
Fonte: Chen et al. (2017). 

 

2.3 Evaluation metrics 
 

The deep semantic segmentation networks were evaluated using five different 

metrics, including Accuracy, F1-Score, R-Precision, and Recall (Table 2) (DUAN et al., 

2021). In addition, due to the test being conducted in more than one orthophoto, we 

consider the average of the results of the tests in each type of river (large and narrow 

rivers) in each experiment. For example, in experiment 1, we tested 5 orthophotos (2 

in large rivers and 3 in narrow rivers), and we show the mean of the results of these 2 

orthophotos in the category “large river” and the mean of these 3 orthophotos in the 

category “narrow rivers”. 

 

Table 2- Metrics for evaluating the performance of methods. 
Evaluation metric Definition Formula 

Accuracy 
The ratio of the correctly predicted 

pixel numbers to the total pixel 
numbers 

𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑅𝑅𝑃𝑃𝐴𝐴 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹
 

F1-Score Harmonic means for precision 
and recall 𝐹𝐹1 − 𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =

2𝑇𝑇𝑃𝑃
2𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹

 

R-Precision 
The ratio of the correctly predicted 
river pixel numbers to the number 

of the labeled river pixels 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =

𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃

 

Recall 

The proportion of the number of 
correctly predicted river pixels and 

the number of the actual target 
feature pixels 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 

Fonte: DUAN et al. (2021). 
Where, True Positive (TP) is the correctly predicting a label (we predicted “water”, and its “water”), True Negative 
(TN) is the correctly predicting the other label (we predicted “background”, and its “background”), False Positive 
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(FP) is the falsely predicting a label (we predicted “water”, but it's “background”), False Negative (FN) is the missing 
and incoming label (we predicted “background”, but it’s “water”). 
 

3. RESULTS AND DISCUSSION 
 

In general, the U-Net model performs better on the semantic segmentation 

task of rivers in high-resolution RGB images (Table 3), achieving an F1-Score of 

97,43% and an Accuracy of 96,82% when the model was tested considering large 

rivers (experiment 3). However, DeepLabV3+ has better results in narrow rivers, with 

an F1-Score of 67,51% and an Accuracy of 95,65%, and the second better result for 

large rivers (F1-Score 95,84% and Accuracy of 95,12%). Both performances occurred 

when the model was trained with large and thin rivers together (experiment 3). The 

PSPNet model surpassed the other models mentioned only for the precision metric in 

river class (R-Precision) with 98.55% for large rivers and 90.98% for narrow rivers. 

These values were also achieved in experiment 3. Therefore, the best approach to 

segmenting large and narrow rivers is to make sure that both characteristics are 

present and balanced in the training model. 
 

Table 3- Quantitative comparison of deep learning models. 

Method Experiment River width Acc F1-Score R-Precision Recall 

DeepLabV3+ 

1  
(Train: large river) 

Large river 94.79% 95.58% 96.75% 94.48% 
Narrow river 94.03% 33.55% 79.88% 22.15% 

2  
(Train: narrow river) 

Large river 82.86% 80.73% 94.89% 74.00% 
Narrow river 95.57% 66.52% 88.86% 53.18% 

3  
(Train: both large 
and narrow rivers) 

Large river 95.12% 95.84% 97.89% 93.96% 

Narrow river 95.65% 67.51% 88.47% 54.59% 

Unet 

1  
(Train: large river) 

Large river 94.77% 95.53% 97.62% 93.61% 
Narrow river 93.92% 51.26% 86.24% 43.71% 

2  
(Train: narrow river) 

Large river 49.68% 25.03% 87.08% 15.34% 
Narrow river 95.30% 64.00% 86.28% 50.88% 

3  
(Train: both large 
and narrow rivers) 

Large river 96.82% 97.43% 96.71% 98.17% 
Narrow river 95.47% 66.36% 85.92% 54.06% 

PSPNet 

1  
(Train: large river) 

Large river 93.53% 94.46% 97.35% 92.07% 
Narrow river 93.56% 24.06% 88.06% 15.03% 

2  
(Train: narrow river) 

Large river 54.69% 36.82% 92.94% 23.70% 
Narrow river 93.53% 44.02% 74.62% 31.41% 

3  
(Train: both large 
and narrow rivers) 

Large river 90.99% 91.57% 98.55% 86.25% 

Narrow river 94.29% 50.33% 90.98% 34.88% 
Fonte: Autor (2023). 
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The performance of the three CNNs exploited to segment large rivers was 

better in experiments 1 and 3. DeepLabV3+ and UNet had a slight improvement in 

performance in experiment 3 compared to experiment 1. Only PSPNet had better 

results in experiment 1 than in experiment 3. This means that for DeepLabV3+ and 

UNet the information on narrow rivers added in the dataset of experiment 3 improved 

the performance, even if subtly, except for PSPNet. Another perception of the results 

for large rivers was that when the model is trained with features of narrow rivers 

(experiment 2), there is a decrease in the results in all CNNs tested for large rivers. 

However, DeepLabV3+ showed a smaller performance drop when compared to the 

other two networks. Although the test orthophoto has large, well-defined rivers, 

coloration, and a homogeneous spectral signature, the results deteriorate because the 

training sample is very different. Although all tested networks maintained a precision 

above 87%, all results slumped in the recall. UNet and PSPNet have an abrupt 

decrease in this metric, presenting 15,34% and 23,70% respectively, i.e., failing to 

segment a good part of the river. This finding is noticeable in the qualitative results 

(Figure 20), in which the segmentation result appears to be a narrower river. This may 

imply that the trained models learned the narrow-width characteristic of the river and 

applied it to the segmentation. However, it does not match reality, highlighting the need 

to also give examples of large rivers, so that the models learn to differentiate these 

types of rivers. 
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Figure 20- Qualitative comparison of the classification of deep learning models in large 

rivers. 

 
Fonte: Autor (2023). 

 

Regarding the performance in narrow rivers, we observed that both 

qualitatively and quantitatively, the performance of all CNNs in the experiments 

gradually improved from experiment 1 to experiment 2 and experiment 3 (Table 3 and 

Figure 21). Although the DeepLabV3+ and UNet networks obtained better results in 

experiment 3, both maintained similar values between experiments 2 and 3. This 

finding reinforces the need to have several samples along the widths of the rivers so 

that the networks learn the types of rivers studied. For example, in experiment 1 the 

training was carried out with large rivers, which have well-defined characteristics, with 
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clean water and few meanders. These characteristics are quite different from the 

characteristics of narrow rivers, which are narrower, have water with frequent 

sediments, change color, and spectral signature, and are more sinuous. Therefore, the 

result in experiment 1 was slightly worse than in the other experiments considering all 

the evaluated CNNs. Although experiment 2 was trained with narrow rivers and 

improved the results, the results were still not good, in all networks the recall, and F1-

Score were low. Experiment 3, which was trained with both river characteristics, 

achieved a light increase and improvement in results on all CNNs tested to target 

narrow rivers. It is also noted that the DeepLabV3+ and U-Net models stand out 

qualitatively and quantitatively in the precise segmentation of rivers. All CNNs achieved 

good accuracy (above 93%) and precision (above 74%) results in all experiments. 

However, for all networks, the recall results were very low, which influenced the F1-

Score values to be low as well. The highest recall value was from DeepLabV3+ 

(54.59%) in experiment 3 and the lowest value was from PSPNet (15.03%) in 

experiment 1. This means that CNNS had great difficulty in segmenting most of the 

narrow rivers. Training and testing all networks on orthophotos with different sizes of 

bodies of water, such as a large river and a thin river, returned different learning from 

CNNs. This approach demonstrates that different sizes of river datasets affect the 

performance of networks, due to the different characteristics of the river sizes. In 

addition, in narrow rivers, there is great difficulty in CNNs learning due to the complexity 

of the dataset. In addition to having more complex characteristics when compared to 

large rivers, such as sinuosity, diffuse edges and water with the presence of sediments, 

the data have a complex background. For example, wetlands, rural roads and exposed 

soil, which can cause further confusion in river delineation. 
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Figure 21- Qualitative comparison of the classification of deep learning models in 

narrow rivers. 

 
Fonte: Autor (2023). 

 

We found that, in general, training with both large and narrow rivers 

(experiment 3), the results were better both qualitatively and quantitatively on all CNNs. 

Furthermore, DeepLabV3+ and U-Net performed better than PSPNet in all 

experiments. Although the CNNs models show little variation between the quantitative 

results, we adopted DeepLabV3+ as the best CNN for the river segmentation task, as 

it indicated better results for both large rivers and narrow rivers. Thus, to map larger 

regions and verify that the results are corroborated, we used the DeepLabV3+ model 
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trained in experiment 3 to classify the 4 entire orthophotos in experiment 4, that is, 

without clipping the 50-meter buffer from the river banks. In this experiment, the result 

for large rivers, the quantitative performance remained with 97.55% accuracy and 

97.24% F1-Score (Table 4). However, qualitatively, the result of orthophoto 3 seems 

to be better than that of orthophoto 2 (Figure 22). The results were better and very 

similar to the experiments carried out in the cropped orthophotos. This indicates that 

for large rivers the approach presented in this study is supported and can be used with 

strong confidence to segment this type of river. 
 
Table 4- Quantitative performance of the DeepLabV3+ model to segment entire 

orthophotos. 

Method Experiment Test Acc F1-Score R-Precision Recall 

DeepLabV3+ 4 
Large River 97.55% 97.24% 94.98% 99.65% 
Narrow river 98.88% 15.30% 8.70% 64.24% 

Fonte: Autor (2023). 

 

      Figure 22- Inference of the best model in entire orthophotos. 

 
Fonte: Autor (2023). 

 

For rivers with smaller widths (narrow rivers), DeepLabV3+ did not perform 

well in segmentation. Despite having obtained 98.88% of correct answers (accuracy), 

the F1-Score was 15.30% (Table 4). Accuracy shows how well the model correctly 

classified the two existing classes of all pixels in the image. However, if we analyze 
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only the class of interest, we find that the precision was very low (8.70%), which means 

that the model had difficulty in correctly classifying the “river” class. This finding can be 

noted visually (Figure 22) with a lot of false positives (FP) mainly in the orthophoto 6. 

The F1-Score value (15.30%) reflects the low recall values (64.24%) and precision, 

which was less than 10%. In this case, the model had a hard time classifying the river 

class correctly and failed to classify a good part of the river class. Furthermore, the 

qualitative perspective (Figure 22) highlights the quantitative findings, in which we can 

observe a large number of regions wrongly classified as river class. This case 

highlights how the class imbalance present in the dataset can be confusing if we only 

look at the high accuracy results (98.8%). It is necessary to reflect on the low values 

of precision, recall, and F1-Score and, therefore, the need to work with more than one 

evaluation metric and a qualitative analysis whenever possible. 

Afterward, we conduct the 5th experiment giving more examples of background 

and verifying if the DeepLabV3+ can segment better the river class. We apply this 

approach to certify that we are not missing any feature of the background and to 

compare if the augmentation of these examples can improve the results. Quantitative 

results show that this approach has improved 22.9% in F1-Score (38.22%) for segment 

narrow rivers (Table 5). Despite this rise, the result is still unsatisfactory, staying under 

40%. Furthermore, for narrow rivers, there was a large increase in R-Precision values 

(60.36%), however, recall remained low (27.97%), which means that there are still 

many regions where the river class was lost and not segmented correctly (Figure 23). 

On the other hand, the results are still better for large rivers, with an F1-Score of 

76.70% and an R-Precision of 99.59%. 
 
Table 5- Quantitative performance of the DeepLabV3+ model trained in experiment 5 

to segment entire orthophotos. 

Method Experiment Test Acc F1-Score R-Precision Recall 

DeepLabV3+ 5 
Large River 88.13% 76.70% 99.59% 68.30% 
Narrow river 99.86% 38.22% 60.36% 27.97% 

Fonte: Autor (2023). 
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      Figure 23- Qualitative results from experiment 5. 

 
Fonte: Autor (2023). 

 

From a qualitative viewpoint (Figure 23) the results of the large rivers confirm 

that DeepLabV3+ can segment the rivers, especially if we focus on orthophoto 2. 

Although the qualitative results of the narrow rivers (ortho 5 and 6) did not present 

many false positives (FP), as in experiment 4, this approach still did not solve the 

narrow river segmentation problem. In this case, it is still possible to visually perceive 

that there are many false negatives (FN), that is, there are still many regions where the 

river class was not segmented. This result can also be noticed visually, in regions 

where the rivers were not classified as true rivers (third line of Figures 24 and 25). In 

these figures’ details, it is possible to visualize an example of when the DeepLabV3+ 

model could segment a good region of the river in both experiments (first line in Figures 

24 and 25). Our dataset is also composed of lakes, which, despite not being the 

objective of the work, were qualitatively evaluated. In the second line (Figures 24 and 

25), there is an example of the segmentation of lakes, which has similar results to those 

of rivers, showing a greater number of false positives in experiment 4 and failure to 

segment some regions in experiment 5. The third line (Figures 24 and 25), it’s a 

challenging region, where both experiments 4 and 5 had difficulty segmenting the river, 

and there were even regions where the river was not segmented. All examples showed 

that experiment 4 has issues with many false positives (FP) when the model classified 

the river to a lot of pixels of background, which reflects the plummet of the R-Precision. 
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In addition, experiment 5 has issues with many false negatives (FN), failing to truly 

segment a good part of the river class, and presenting a very low recall. Therefore, 

even giving more background examples for the CNN (experiment 5) there are still 

difficulties in segmenting narrow rivers. In this way, there is a need to work and study 

more in-depth this type of complex data, which are narrow rivers. 

  

Figure 24- Details of river segmentation from orthophoto 5 in experiments 4 and 5. 

 
Fonte: Autor (2023). 
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Figure 25- Details of river segmentation from orthophoto 6 in experiments 4 and 5. 

 
Fonte: Autor (2023). 

 

4. CONCLUSION 
 

This paper presented an approach to accurately mapping large and narrow 

rivers in high spatial resolution RGB images using deep semantic segmentation 

networks. This approach was applied using a challenging dataset including rivers of 

different sizes, widths such as large rivers (more than 10 m large) and narrow rivers 

(less than 10 m large), and river shapes. We conclude that even with different 

approaches, there is still great difficulty in segmenting narrow rivers. his conclusion 

may be due to the characteristics of narrow rivers, which are usually sinuous, 

sedimented, have spectral comportment complex, and a small number of pixels that 

are densely distributed, making this task even more challenging.  

In our study, the best results for all the CNNs studied were when the networks 

were trained with both large and narrow river types combined. The deep learning model 

(U-Net) achieved the best quantitative result for segmenting large rivers (F1-Score of 

97.43%). However, DeepLabV3+ was produced the best model, as the results for large 
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rivers were very similar to the Unet, and, in addition, it obtained better results for narrow 

rivers. Furthermore, when CNNs were trained with only large rivers, the performance 

to target narrow rivers deteriorated and when trained with only narrow rivers, the 

performance was worse for both large and narrow rivers. In addition, when tested over 

a larger region, the large rivers maintained good accuracy, but the narrow rivers greatly 

worsened the performance. Even offering more counterexamples in DeepLabV3+ 

training (better performance network), the results for large rivers were better and for 

narrow rivers worse.  

We conclude that this high precision is because large rivers present smaller 

variations in terms of spectral signature and pixel mixing, which may favor the learning 

of the model. Our experiments show that all tested models have difficulty segmenting 

narrow rivers, even though the high-resolution RGB images show them in great detail. 

Although convolutional neural networks have the characteristic of learning 

characteristics hierarchically, the evaluated models still present difficulties to segment 

flows and flows. The approach used in this study demonstrated that large areas of 

water bodies can be successfully segmented, even using RGB images, which makes 

our approach much broader, without the need for an infrared spectrum. However, 

narrow rivers have trouble getting accurate metrics in segmentation.  

We recommend that future studies explore new alternatives based on deep 

learning methods as a vision transformer to perform the task of semantic segmentation 

of smaller rivers. We demonstrate the ability of methods based on deep learning to 

map water resources in RGB images, contributing to decision-making in water 

management and environmental studies. As there is still a gap in the segmentation of 

narrow rivers with accurate precision in high-resolution RGB images, future studies 

can try strategies to fill this question. One approach would be to work with the 

architecture of the networks, looking for implementations that gain more image context 

at this level of scale, such as Transformer-based architectures. Another bias would be 

to work with the image, so that the features are sharper, which can improve the 

performance of deep learning models. 
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CAPÍTULO 3– RIVER MAPPING USING TRANSFORMER-BASED 
ARCHITECTURE IN HIGH SPATIAL RESOLUTION RGB IMAGES 

 

Abstract: Mapping water resources such as rivers is important to the planning and 

management of this vital resource. With advances and technological studies of remote 

sensing and computer vision, the mapping of these resources has become increasingly 

accurate. The deep learning semantic segmentation methods has been widely 

explored and ViT-based networks are the state-of-the-art to extract information from 

remote sensing images. We evaluated the performance of the SegFormer 

(transformer-based) neural network to map rivers in high spatial resolution RGB 

images. To validate the information, we compared the performance of the SegFormer 

with the DeepLabV3+ neural network (CNN-based). In addition, we separately 

compare the performance of networks in narrow rivers, as they have more complex 

characteristics, in addition to being inserted in a complex context. For this, we tested 

the networks in aerial RGB orthophotos with 1 meter of spatial resolution. Although 

both evaluated networks were able to segment rivers under the mentioned conditions, 

SegFormer outperformed DeepLabV3+ in all evaluated metrics (Accuracy: 98.97%, 

F1-Score: 98.96%, and IoU: 97.96%). Despite the expected performance decline for 

narrow rivers, SegFormer maintained its excellent performance (Accuracy: 81.76%, 

F1-Score: 85.99%, and IoU: 75.42%. Thus, we conclude that SegFormer is suitable 

for segmenting rivers in high-resolution RGB images. spatial resolution, even narrow 

rivers. Studies using Transformer-based architectures should continue to be 

investigated in other contexts, due to their ability to gain context, be a lightweight 

network, and present excellent performance. 

 

Keywords: Water resource mapping; Deep Learning method; High-resolution remote 

sensing image; Low-spectral resolution. 

 

Resumo: O mapeamento de recursos hídricos, como rios, é importante para o 

planejamento e gestão desse recurso vital. Com os avanços e estudos tecnológicos 

de sensoriamento remoto e visão computacional, o mapeamento desses recursos tem 

se tornado cada vez mais preciso. O método de segmentação semântica de 

aprendizado profundo tem sido amplamente explorado e as redes baseadas em ViT 

têm sido o estado da arte para extrair informações de imagens de sensoriamento 
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remoto. Avaliamos o desempenho da rede neural SegFormer (baseada em 

transformador) para mapear rios em imagens RGB de alta resolução espacial. Para 

validar as informações, comparamos o desempenho do SegFormer com a rede neural 

DeepLabV3+ (baseada em Convolutional Neural Networks). Além disso, comparamos 

separadamente o desempenho das redes em rios estreitos, pois possuem 

características mais complexas, além de estarem inseridas em um contexto complexo. 

Para isso, testamos as redes em ortofotos RGB aéreas com 1 metro de resolução 

espacial. Embora ambas as redes avaliadas tenham conseguido segmentar rios nas 

condições mencionadas, o SegFormer superou o DeepLabV3+ em todas as métricas 

avaliadas (Precisão: 98,97%, F1-Score: 98,96% e IoU: 97,96%). Apesar da esperada 

queda de desempenho para rios estreitos, o SegFormer manteve seu excelente 

desempenho (Precisão: 81,76%, F1-Score: 85,99% e IoU: 75,42%. Assim, concluímos 

que o SegFormer é adequado para segmentar rios em imagens RGB de alta resolução 

espacial, mesmo em rios estreitos. Estudos com arquitetura baseada em Transformer 

tem potencial para ser investigados em outros contextos, devido à sua capacidade de 

ganhar contexto, ser uma rede leve e apresentar excelente desempenho. 

 

Palavras-chave: Mapeamento de recursos hídricos; Método Deep Learning; Imagem 

de sensoriamento remoto de alta resolução; Baixa resolução espectral. 

 

1. INTRODUCTION 
 

Water resources are essential for maintaining life, and knowing their location 

and features is necessary for managing this vital resource. The mapping of this 

resource provides essential subsidies for water management, contributing directly to 

public health, environment preservation, and economic development. Rivers, streams, 

lakes, ponds, wetlands, and seas can be categorized as surface water, i.e., it 

accumulates on the Earth's surface. Rivers have an important role in the water cycle 

and water management, thus being a topic of analysis for several years. They can be 

observed and studied through remote sensing (RS) data, i.e., images obtained from 

orbital, aerial, or terrestrial platforms. Through RS images it is possible to extract the 

features of rivers and characterize them, however, rivers have complex characteristics 

and scenes. They can vary in shape (large, narrow, straight, sinuous), texture (polluted 

or clean rivers), and spectral signature, and are difficult to present well-defined edges. 
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Furthermore, when using images with lower spectral resolution (e.g., RGB images) to 

reduce mapping costs, the challenge is greater, because this bands don't have a lot of 

spectral contrast between the target (water) and background. However, the association 

with images of higher spatial resolution can help in the mapping, as these present a 

better level of detail in the image. In addition, with the progress of high-resolution RS 

imaging technology, image texture, and object geometry are increasingly clear and fine 

(LI et al., 2022).  

There are several methods for mapping surface waters. The initial methods 

are based on spectral characteristics, such as the single-band threshold method, 

multiband spectral relationship method, and water index method (WANG et al., 2021). 

However, these methods focus only on spectral characteristics and have small 

automation. Spatial information such as shape, size, texture, edge, shadow, and 

context semantics are essential to achieve better accuracies (ZHANG et al., 2021). 

There are methods based on machine learning algorithms, such as random forest (KO; 

KIM; NAM, 2015; TIAN et al., 2016) and support vector machine (SUN et al., 2014; 

SARP; OZCELIK, 2017), however, such algorithms process a limited number of 

samples and cannot extract deep information from the dataset, so the generalization 

ability is insufficient (LI et al., 2021). Deep learning (DL) based methods have been 

explored in the remote sensing field and have demonstrated superior performance in 

applications such as object classification, detection, and semantic segmentation 

(YUAN et al., 2021).  

Semantic segmentation is a task that aims to infer the knowledge of a scene 

by establishing a known class for each pixel, a.k.a. pixel-level classification (BRESSAN 

et al., 2022). Firstly, Convolutional Neural Networks (CNN) architecture demonstrates 

good performances and has been explored intensively for semantic segmentation 

tasks (ALAM et al., 2021). The CNNs explored for this task in remote sensing usually 

are deeper and have several hidden layers, being called Deep Convolutional Neural 

Networks (DCNNs) (KOTARIDIS; LAZARIDOU, 2021). Despite the existing traditional 

DCNNs (SegNet, Unet, DeepLabV3+), in the last years, several studies have 

designed, modified, and incorporate multiple models to increase the performance in 

semantic segmentation. One study (ZHANG et al., 2021) proposed a rich feature 

extraction network (MECNet) composed of three modules: Multi-feature Extraction and 

Combination (MEC), encoder and Decoder Semantic Feature Fusion (DSFF), and 

Multi-scale Prediction Fusion (MPF). The proposed network was valid for water-body 



84 
 

segmentation in very high-resolution RGB remote sensing images (IoU around 90%). 

However, the method doesn’t pay much attention to the spatial relationship between 

feature maps, influenced by the design that focuses on the global information of feature 

maps. Despite the network being designed specifically to deal with complex spectral 

mixtures, challenges such as extracting small rivers were not addressed. Another 

investigation (HU et al., 2022), proposed a Multi-scale Feature Aggregation network to 

extract rich context information. Composed of a deep feature extraction module (DFE), 

to obtain multi-scale features and pay attention to global and local edge information; a 

multi-branch aggregation module (MBA) to enhance the interconnection and integrate 

the two types of feature representation, and the feature-fusion upsample module (FFU) 

to complete feature fusion and location recovery. However, the authors point out some 

shortcomings, for example, reducing the weight of the model, changing the convolution 

kernel or the convolution type, and even selecting a lighter network. DCNN has an 

acknowledged success, however, there are still issues to be solved, for example, the 

loss of localization accuracy (blurred boundaries) and spatial details (omission of small 

objects) in the pooling operations (KOTARIDIS; LAZARIDOU, 2021). Thus, 

aggregating contextual information is essential, especially for semantic segmentation 

of remote sensing images (KOTARIDIS; LAZARIDOU, 2021). 

A recent deep learning architecture has gained attention in the field of 

computer vision (CV), the Vision Transformer (ViT) (DOSOVITSKIY et al., 2020) which 

is based on the Transformer architecture (VASWANI et al., 2017), a state-of-art for 

translation in the NLP field (Natural Language Processing). Transformers use a self-

attention mechanism, without using sequence-aligned RNNs or convolutions in 

translation tasks (VASWANI et al., 2017). The assertive response and lightweight 

Transformer architecture inspired the uses in other fields of NLP, like in CV. In this 

context, Transformed-based networks are one of the best-emerging approaches to 

extracting information, being the state-of-art DL semantic segmentation method. 

SegFormer is a ViT-based architecture that uses an encoder with a hierarchical 

structure, maintaining multiscale resource outputs, which significantly contributes to 

tasks with objects that vary in size, such as rivers. In addition, this architecture is built 

with lightweight but robust decoders, representing an advantage over other ViT-based 

networks (XIE et al., 2021). This network architecture can maintain a combination of 

local and global attention with its encoder, aggregating information from different layers 

of the network to render more powerful representations (GONÇALVES et al., 2023). 
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SegFormer (XIE et al., 2021) has shown promising results in terms of accuracy 

and precision in vegetation context (GEORGES GOMES et al., 2022), and burned 

areas (GONÇALVES et al., 2023). However, there is a lack of studies on mapping 

rivers using SegFormer. Only one study (YANG et al., 2022) modified the version 

Segformer-b0 with a module (Deepmask) to pay more attention to the details in the 

image and use Lovász loss to improve IoU. They used DeepLabv3+model as the 

teacher model to improve the segmentation, achieving 95.06% mIoU in Sentinel-2A 

multi-spectral images (10 m resolution). However, there is no information about the 

performance of this new semantic segmentation method to map rivers using high 

spatial resolution RGB images, or for narrow rivers, which have complex features, such 

as, sinuosity, higher variety of pixels and complex spectral information due to, 

vegetation and solid suspended, presence on the water. Thus, this study aims to 

evaluate the performance of the transformer-based SegFormer in the semantic 

segmentation of surface water (large and narrow rivers) in high spatial resolution RGB 

images. SegFormer will be compared with a recent CNN DeepLabV3+ which has been 

applied in several contexts (LI et al., 2019; MARTINS et al., 2021; MUHADI et al., 2021; 

HARIKA et al., 2021). The main contribution of this study is to indicate whether 

Transformer-based neural networks outperform CNN-based neural networks for 

segmenting rivers in high-resolution RGB images. Another contribution is to make 

available our dataset publicly2.  

 

2. MATERIALS AND METHOD 
 

We divide the method into 3 steps and organize the workflow in Figure 26. 

Initially (step 1) we processed and labeled the RGB aerial images. Then we split the 

dataset into train/validation and test images. In a computer environment, we conducted 

semantic segmentation using deep learning methods (step 2). Finally, we evaluated 

and compared the performance of the methods (step 3). 

 

                                            
2 https://github.com/mayarafaita/River_SemanticSegmentation.git  

https://github.com/mayarafaita/River_SemanticSegmentation.git
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Figure 26- Main steps carried out in the approach of our study. 

 
Fonte: Autor (2023). 

 

2.1 Data acquisition, processing, and labeling 
 

We used aerial photographs from the Mapeia-SP project conducted in Brazil 

(2011). They are composed of RGB bands with 13,436 x 14,409 pixels and, a Ground 

Sample Distance (GSD) of 0.45 m. In imagery, the photographs present geometry and 

relief distortions, therefore, they undergo an orthorectification process, being called 

orthophotos. This process corrects distortions, effects of perspectives, and the relief's 

influence on the image's geometry. This gives more excellent cartographic product 

quality and results in a 1-meter resolution for our orthophotos.  

The study area is a western region of São Paulo state (Figure 27). The region 

comprises rural roads, crops, pastures, buildings, vegetation, exposed soil, and rivers 

and lakes with different characteristics, such as large, narrow, sinuous, straight, silted, 

and clear, with riparian forests and shadows. This diversity of background elements 

and the diversity of rivers’ water features makes the dataset even more challenging 

with a complex background. In terms of definition, we refer to the “water class” for large 

and narrow river labels. Furthermore, there is a class imbalance issue, where in some 

cases the water class presents more pixels than the background, for example, in large 
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rivers. Whereas, in most orthophotos, the water class has much fewer pixels (narrow 

rivers) than the background class. 

 

    Figure 27- Study area and water labeling. 

 
Fonte: Autor (2023). 

 

A B 

C D 
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We selected 8 orthophotos distributed throughout the study region as 

experimental areas. We manually labeled the river features in all orthophotos by visual 

interpretation using GIS. From this selection, 4 orthophotos are for training and 

validation and 4 are for testing (Figure 27). There are different features of rivers in the 

dataset, such as, narrow rivers (Figure 27 – A and C) and large rivers (Figure 27 – B 

and D). Narrow rivers are sinuous, have more sediments on the water, and spectral 

comportment different from clean river, for example. Large rivers don’t have such 

sinuosity and are clearly and homogeneous water. Due to the variety of water and 

background features, and the class imbalance, we are careful to present samples 

representing these variations in training and test samples.  

 

2.2 Semantic Segmentation Background 
 

One of the structures of deep neural networks used in semantic segmentation 

tasks is the encoder-decoder. We are using two different encoder-decoder 

architectures: CNN-based DeepLabV3+ (CHEN et al., 2018) and Transformer-based 

SegFormer (XIE et al., 2021). Initially, DeepLab (CHEN et al., 2017a) was proposed 

with Atrous Convolution, Atrous Spatial Pyramid Pooling (ASPP) module, and a fully 

connected Conditional Random Field (CRF). This architecture allows an increase in 

the receptive field of network, and context information at multiple scales, and improves 

localization performance. However, the model misses some objects’ boundaries. 

Therefore, the DeepLabV3 (CHEN et al., 2017b) makes some adjustments, such as 

Atrous convolution in cascade and batch normalization within ASPP, overcoming the 

DeepLab. Furthermore, to achieve better results, the CNN was improved with an 

encoder-decoder model, the DeepLabV3+ (CHEN et al., 2018). In this architecture, the 

encoder module is the structure of DeepLabV3, and the decoder module was added 

to improve the performance of the object boundaries (Figure 28). In addition, they 

applied the Xception model to the encoder-decoder for faster and more robust 

performance. 
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       Figure 28- DeepLabV3+ architecture. 

 
Fonte: Chen et al. (2018).  

 

SegFormer (XIE et al., 2021) is an encoder-decoder based on Transformer-

backbone for semantic segmentation tasks. The SegFormer framework consists of a 

hierarchical Transformer encoder and a lightweight All-MLP decoder (Figure 29). The 

hierarchically constructed encoder (Mix Transformer) qualifies the model to learn high-

resolution coarse and low-resolution fine features and gain processing time and it is 

smaller than ViT. A further component that produces less computational demand and 

simplifies the model is the lightweight MLP decoder to predict the semantic 

segmentation mask. 
 

Figure 29- SegFormer framework. 

 
Fonte: Xie et al. (2021). 
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The SegFormer outsets with an input image split in a 4x4 patch size that goes 

through 4 transformer blocks and earns multi-level and multi-level features. Each 

transformer block has a self-attention module in Pyramid Vision Transformer (PVT), 

which reduces the sequence's length and the self-attention mechanism's complexity. 

In sequence, a Mix-FFN (feed-forward network) layer is introduced using a 3 × 3 Conv 

in the feed-forward network (FFN) to reduce the number of parameters and improve 

efficiency. The last layer in the transformer block, overlapping patch merging, 

assembles features of the same process size without overlapping. 

 

2.3 Experimental details 
 

For the input of the deep neural networks used in the experiments (SegFormer 

and DeepLabv3+), we split the images into non-overlapping patches with 512 x 512 

pixels. Then we divide it into 2,569 for training, 454 for validation, and 2,968 for testing 

image patches. We created a second test set of 1,512 images, limited to only those 

with narrow rivers. The previously-mentioned semantic segmentation methods were 

implemented using the MMSegmentation toolbox (https://github.com/open-

mmlab/mmsegmentation) on the Ubuntu 18.04 operating system. For DeepLabv3+ 

(CHEN et al., 2018) and SegFormer (Xia et al., 2021) we settle the parameters as 

AdamW optimizer (LOSHCHILOV; HUTTER, 2017) with an initial learning rate of 

0.00006 for 80K iterations using a batch size of 2 and were updated by a Poly LR 

schedule with a factor of 1 by default. Deeplabv3+ was trained with ResNet-101, while 

SegFormer was trained with the MiT-B5 backbone, as determined to be the best option 

available in MMSegmentation. All the experiments were performed on a workstation 

with Intel (R) Core™ i7-5820K CPU @ 3.30GHz × 12 CPU, 32 GB memory, and an 

NVIDIA Titan V graphics card with 12 GB of graphics memory and 5120 CUDA 

(Compute Unified Device Architecture) cores. 

Transformer-based and CNN-based models were evaluated and compared for 

performance assessment. We evaluate and compared SegFormer and DeepLabV3+ 

for all tested orthophotos and also evaluated the performance in the second test set, 

with only narrow rivers. We use the most consolidated metrics for the semantic 

segmentation task: Accuracy (Acc), F1-Score (F1), and Intersection over Union (IoU). 

Acc is the ratio of the correctly predicted pixel numbers to the total pixel number 

(Equation 1). F1-Score is the harmonic means for water precision and recall (Equation 

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation
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2). IoU is the ratio of the intersection to the union of the ground truth and the predicted 

area.  

 

𝐴𝐴𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹
   (1) 

𝐹𝐹1 − 𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
2𝑇𝑇𝑃𝑃

2𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹
   (2) 

𝐼𝐼𝑃𝑃𝐼𝐼 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹
   (3) 

 
Where, True Positive (TP) is the correctly predicting a label (we predicted 

“water”, and its “water”), True Negative (TN) is the correctly predicting the other label 

(we predicted “background”, and its “background”), False Positive (FP) is the falsely 

predicting a label (we predicted “water”, but it's “background”), False Negative (FN) is 

the missing and incoming label (we predicted “background”, but it’s “water”).  

 
3. RESULTS AND DISCUSSION 

 

We present the results and, discuss the related implications in 2 sections. In 

the first one (Section 3.1), we show the quantitative results and discuss the 

performance of Transformer-based architecture (SegFormer), and compared it with a 

CNN-based architecture (DeepLabV3+) to map water surface in high-resolution RGB 

images. Then (Section 3.2) we analyze the qualitative results comparing the 

DeepLabV3+ and SegFormer performance segmentation. 

 

3.1 Evaluation of Quali-Quantitative Performance 
 

The rivers’ semantic segmentation results are presented in Table 6. The 

evaluation metrics are described separately for the background pixels and segmented 

water pixels to obtain a complete analysis of the results. There is an imbalance of 

classes, and therefore, there may be inconsistency in the results evaluated on 

averages since there are more background pixels than water pixels on most images. 

Both methods demonstrated competence to map water surfaces, presenting 

accuracies of up to 96% (DeeplabV3+) and 98% (SegFormer) for water class (Table 

6). However, SegFormer performed better than DeepLabV3+ in all evaluated metrics 
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for the two classes (background and water surface). This finding demonstrates the 

superiority of the Transformer-based over the CNN-based methods. Regarding the 

background class, both architectures demonstrated excellent performance, exceeding 

99%. On the other hand, SegFormer achieved results up to 3.5% higher than 

DeepLabV3+, in the case of the water class IoU, in which DeepLabV3+ obtained 

94.42% and SegFormer 97.96%. 

 

Table 6- Segmentation results of all water surfaces. 

All surface water Acc (%) F1-Score (%) IoU (%) 
BG Water BG Water BG Water 

SegFormer 99.88 98.97 99.88 98.96 99.76 97.96 
DeepLabV3+ 99.72 96.63 99.66 97.13 99.33 94.42 

Fonte: Autor (2023). 

 

In addition to this analysis, we also investigated the performance of SegFormer 

and DeepLabV3+ for narrow rivers (Table 7). Due to complex characteristics such as 

spectral comportment, shape, and more blurred edges, mapping narrow rivers has 

been a challenge in the scientific community (LI et al., 2022). We evaluate two 

orthophotos that represent narrow rivers, mentioned previously in section 2.3. Both 

methods maintained a great performance regarding the background classification 

performance, raising 99%. As predicted, both methods showed a decrease in all 

evaluated metrics, due to the complex resources of narrow rivers. However, the 

performance of the SegFormer concerning the segmentation of the water class 

remained superior for both scenarios. This finding further emphasizes the evidence 

that the Transformer-based method has been remarkable to the CNN method. 

Furthermore, for the water class, SegFormer presented a result up to 6.8% higher than 

DeepLabV3+ about IoU and 4.6% higher about F1-Score.  

 

Table 7- Segmentation results of narrow rivers. 

Narrow Rivers Acc (%) F1-Score (%) IoU (%) 
BG Water BG Water BG Water 

SegFormer 99.92 81.76 99.87 85.99 99.75 75.42 
DeepLabV3+ 99.83 80.81 99.83 81.35 99.65 68.56 

Fonte: Autor (2023). 

 

In all tested orthophotos, SegFormer presents better results, with 

segmentation more similar to ground truth (Figure 30). Both segmentation methods 
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can identify the water surface on the orthophotos. However, visually, DeepLabV3+ 

performed poorly, producing more false positive pixels of water. In the first two lines, 

the features of the river are narrow, with sediments in the water, and more complex to 

delimit. On the other hand, the last two lines are an example of rivers with 

characteristics of rivers with greater width, clear waters, and better-defined borders. If 

we compare the mentioned types of rivers, we noted that the large rivers were almost 

perfectly delimited, that is, there were almost no false negatives, and the two networks 

were able to identify the rivers. However, both networks still showed some false 

negatives, even for the large rivers. The biggest difficulty of the networks, mainly for 

DeepLabV3+, is concerning the examples of what is not a river.  
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Figure 30- Results from water surface semantic segmentation in the orthophotos. The 

first 2 rows are examples of narrow rivers and the 2 last rows represent large rivers. 

 
Fonte: Autor (2023). 

 

SegFormer and DeepLabV3+ presented FP in a rural road region (Figure 31 - 

first line, yellow highlight), however, DeepLabV3+ presented more difficulty, 

segmenting larger areas of water class erroneously. This example also shows the 

ability of the networks to segment rivers with complex characteristics, both networks 

were able to delimit the narrow river. However, SegFormer presents a classification of 

the river continuously, that is, the river path is segmented continuously, without 

interruptions in the path. Otherwise, DeepLabV3+ presents the river segmentation in 

a disconnected way, as shown in Figure 31 (red highlight).  
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Figure 31- Examples of False Positives and False Negatives water segmentation. 

 
Fonte: Autor (2023). 

 
4. CONCLUSION 

 

We investigated the capacity of a deep neural network based on ViT 

(SegFormer) in the task of semantic segmentation of rivers in RGB images with high 

spatial resolution. We compare the performance of the mentioned network with a CNN-

based network (DeepLabV3+). The results demonstrated that vision transformer-

based networks outperformed traditional CNN architecture (DeepLabV3+) in terms of 

quantitative and qualitative evaluation. The SegFormer architecture presented 

superior results in all evaluated metrics, reaching an excellent performance with an F1-

Score of 98.96%. Both neural networks were able to segment rivers with great 

accuracy, above 96%, however, DeepLabV3+ segmentation presented more false 

positives and false negatives, making its performance worse. We found that the 

performance of deep neural networks degrades when we evaluate images of narrow 

rivers separately. As they contain narrow rivers, the features are more complex in 

spectral aspects, shape, and edge definition, making the segmentation task more 

challenging. Even so, the tests carried out with SegFormer are remarkable and 

maintained the best metrics, with an F1-Score of 85.99%. We conclude that the 

Transformer-based network, SegFormer, outperforms the CNN-based network 

(DeepLabV3+) and is capable of segment large rivers and narrow rivers in high spatial 

resolution RGB images. Future studies should continue to explore vision transformer 

architectures to segment rivers with different features, explore different platforms and 

sensors, and test the generalization capability of the SegFormer network in 

segmenting rivers.  
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2 CONSIDERAÇÕES FINAIS 
 

A presente pesquisa avaliou o desempenho de redes de aprendizagem 

profunda para mapear rios em imagens RGB de alta resolução espacial. No capítulo I 

foi realizada uma síntese das pesquisas mais recentes que trabalharam com 

sensoriamento remoto e aprendizagem profunda para segmentar recursos hídricos. 

Com esse estudo, notamos que existem poucos estudos que trabalham com imagens 

de baixa resolução espectral, como RGB, em conjunto com alta resolução espacial, 

para mapeamento de rios, apresentando ainda, problemas para mapear rios estreitos.  

Em seguida, Capítulo II, avaliamos redes neurais de aprendizagem profunda 

baseadas em CNN para segmentar rios largos e rios estreitos. As arquiteturas 

avaliadas nesta etapa da pesquisa (DeepLabV3+, Unet e PSPNet) apresentaram 

baixa performance, com um F1-Score abaixo de 70% para segmentar rios de largura 

inferior a 10 metros (rios estreitos) em imagens RGB mesmo que em alta resolução 

espacial. Porém, estas CNNs conseguem segmentar rios com largura superior a 10 

metros com uma alta performance, com um F1-Score acima de 95% (DeepLabV3+ e 

Unet). Ao usar a CNN de melhor performance (DeepLabV3+) em uma área de maior 

abrangência para inferir as regiões de rios, a métrica de se mantém alta (F1-Score 

97%) para rios largos. Entretanto, para rios estreitos a acurácia diminui ainda mais 

(F1-Score 15%). Em razão de trabalharmos um conjunto de dados com características 

espectrais muito complexas e diversas, houve maior dificuldade em segmentar rios 

estreitos. Estes apresentam comportamento espectral facilmente confundível com 

vegetações, áreas úmidas, sombras e até trechos de solo exposto, porque 

apresentam vegetação e sedimentos em suspensão na água. Portanto, mesmo 

usando amostras com rios de largura inferior a 10 metros e amostras diversificadas 

da categoria “não rio”, as redes neurais ainda apresentaram dificuldades para 

segmentar esse tipo de rio. 

Com o objetivo de melhorar a acurácia da segmentação semântica dos rios 

(largos e estreitos), no Capítulo III, exploramos uma arquitetura de rede de 

aprendizagem profunda SegFormer, que tem sido o estado-da-arte em segmentação 

semântica, que são baseadas em visão-Transformer (ViT). Comparada com a rede 

neural DeepLabV3+, o SegFormer apresentou melhor performance em todas as 

métricas avaliadas, inclusive para rios estreitos, sendo capaz de segmentar os rios 

com maior precisão e menor confusão com os elementos do fundo. Concluímos que 
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o SegFormer foi capaz de mapear rios largos e estreitos com acurácia de 98.97%, 

sendo adequado para essa tarefa em imagens RGB de 1 metro de resolução.  

Recomendamos que trabalhos futuros explorem as redes baseadas em ViT 

para segmentação semântica em outros contextos. Outra recomendação está na 

investigação da adaptação de domínio da rede treinada, assim, será possível verificar 

a generalização da rede, se ela é capaz de segmentar outros tipos de rios em outras 

regiões além da que foi estudada. Outra análise para trabalhos futuros está 

relacionada com o mapeamento de recursos hídricos utilizando ViT em imagens de 

sensoriamento remoto multitemporais, que podem auxiliar no monitoramento, em 

tempo real, dos recursos hídricos. Uma análise multimodal também poderá contribuir 

para o monitoramento dos recursos hídricos, considerando que cada sensor tem suas 

próprias limitações, portanto, modelar uma estrutura de rede robusta com base em 

imagens multimodais é significativo para um maior desenvolvimento no futuro. 
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